Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Color image encryption algorithm based on DNA code and alternating quantum random walk

Wang Yi-Nuo Song Zhao-Yang Ma Yu-Lin Hua Nan Ma Hong-Yang

Citation:

Color image encryption algorithm based on DNA code and alternating quantum random walk

Wang Yi-Nuo, Song Zhao-Yang, Ma Yu-Lin, Hua Nan, Ma Hong-Yang
PDF
HTML
Get Citation
  • In recent years, image encryption technology has attracted much attention. As people pay more attention to communication privacy and network security, the requirements for information encryption technology are more stringent. As one of the information carriers, images are valuable for carrying the effectiveness and vividness of the information. This paper proposes a color image encryption algorithm based on DNA encoding and alternating quantum random walk. Quantum random walk is an excellent cryptographic tool that participates in all parts of the algorithm process, and DNA encoding is used as the core encryption method to complete the algorithm. This article describes the encryption and decryption process in detail, and conducts simulation experiments to verify and analyze the results of the proposed algorithm. In the simulation stage, we design the simulation key parameters, encode the color image encryption and decryption experiments, and carry out related analysis. The experimental results show that the color image encryption algorithm proposed in this paper can perform safe and effective color image encryption. The correlation analysis shows that the image histogram after encryption is stable, the pixel correlation coefficient approaches 0, and the key space is ${2^{ 128 }} $, the three-channel information entropy reaches more than 7.997, which can resist statistical attacks, brute force attacks and other attack methods. In addition, DNA coding has unique biological characteristics in addition to the novel coding and calculation methods, which provide new ideas and directions for cryptographic research.
      Corresponding author: Ma Hong-Yang, hongyang_ma@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132, 61772295), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019YQ01), and the Higher Educational Science and Technology Program of Shandong Province, China(Grant No. J18KZ012).
    [1]

    Zheng R H, Xiao Y, Su S L, Chen Y H, Shi Z C, Song J, Xia Y, Zheng S B 2021 Phys. Rev. A 103 052402Google Scholar

    [2]

    Kang Y H, Shi Z C, Huang B H, Song J, Xia Y 2020 Phys. Rev. A 101 032322Google Scholar

    [3]

    Long G L 2001 Phys. Rev. A 64 022307Google Scholar

    [4]

    Long G L, Li X, Sun Y 2002 Phys. Lett. A 294 143Google Scholar

    [5]

    Li T, Zhang S, Fu X Q, Wang X, Wang Y, Lin J, Bao W S 2019 Chin. Phys. B 28 120301Google Scholar

    [6]

    Liu F, Zhang X, Xu P A, He Z X, Ma H Y 2020 Int. J. Theor. Phys. 59 3491Google Scholar

    [7]

    Zhou N R, Li J F, Yu Z B, Gong L H, A Farouk 2017 Quantum Inf. Process. 16 1Google Scholar

    [8]

    Gong L H, Li J F, Zhou N R 2018 Laser Phys. Lett. 15 105204Google Scholar

    [9]

    Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F, Guo G C 2021 Phys. Rev. Lett. 126 010503Google Scholar

    [10]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [11]

    Yan Z H, Qin J L, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2021 Fundam. Res. 1 43Google Scholar

    [12]

    Zhao J B, Zhang W B, Ma Y L, Zhang X H, Ma H Y 2020 Appl. Sci. 10 1935Google Scholar

    [13]

    Qiu T H, Li H, Xie M, Liu Q, Ma H Y 2019 Opt. Express 27 27477Google Scholar

    [14]

    Ma H Y, Xu P A, Shao C H, Chen L B, Li J X, Pan Q 2019 Int. J. Theor. Phys. 58 4241Google Scholar

    [15]

    Li H S, Fan P, Xia H Y, Peng H L, Long G L 2020 Sci. China Phys. Mech. 63 1

    [16]

    Zheng R H, Kang Y H, Su S L, Song J, Xia Y 2020 Phys. Rev. A 102 012609Google Scholar

    [17]

    Ma H Y, He Z X, Xu P A, Dong Y M, Fan X K 2020 Quantum Inf. Process 19 1

    [18]

    Xu P A, He Z X, Qiu T H, Ma H Y 2020 Opt. Express 28 12508Google Scholar

    [19]

    Zhou N R, Huang L X, Gong L H, Zheng Q W 2020 Quantum Inf. Process. 19 1

    [20]

    Li H S, Fan P, Xia H Y, Peng H L, Long G L 2020 Sci. China. Phys. Mech. 63 1

    [21]

    Castagnoli G 2016 Found Phys. 46 360Google Scholar

    [22]

    Castagnoli G 2016 Quanta 5 34Google Scholar

    [23]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scr. 89 035101Google Scholar

    [24]

    Li H H, Gong L H, Zhou N R 2020 Chin. Phys. B 29 110304Google Scholar

    [25]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687Google Scholar

    [26]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915Google Scholar

    [27]

    Watrous J 2001 Comput. Syst. Sci. 62 376Google Scholar

    [28]

    Abd El-Latif A A, Abd-El-Atty B, Venegas-Andraca S E, Elwahsh H, Piran M J, Bashir A K, Song O, Mazurczyk W 2020 IEEE Access 8 92687Google Scholar

    [29]

    Abd-El-Atty B, Iliyasu A M, Alaskar H, Abd El-Latif A A 2020 Sensors 20 3108Google Scholar

    [30]

    Abd EL-Latif A A, Abd-El-Atty B, Venegas-Andraca S E 2020 Physica A 547 123869Google Scholar

    [31]

    Abd El-Latif A A, Abd-El-Atty B, Elseuofi S, Khalifa H S, Alghamdi A S, Polat K, Amin M 2020 Physica A 541 123687Google Scholar

    [32]

    Abd-El-Atty B, Amin M, Iliyasu A M 2020 Sci. Rep. 10

    [33]

    Godsil C, Zhan H 2019 J. Comb. Theory Ser. A 167 181Google Scholar

    [34]

    Abd-El-Atty B, Iliyasu A M, Alanezi A, Abd EL-Latif A A 2021 Opt. Lasers Eng. 138 106403Google Scholar

    [35]

    Adleman L M 1994 Science 266 1021Google Scholar

    [36]

    Leier A, Richter C, Banzhaf W, Rauhe H 2000 Biosystems 57 13Google Scholar

    [37]

    Chen J 2003 Proceedings of the 2003 International Symposium on Circuits and Systems ISCAS'03. IEEE 2003 3 III-III.

    [38]

    Chang W L, Guo M, Ho M S H 2005 IEEE Trans Nanobiosci. 4 149Google Scholar

    [39]

    Lu M X, Lai X J, Xiao G Z, Qin L 2007 Sci. China Inf. Sci. 50 324Google Scholar

    [40]

    Lai X J, Lu M X, Qin L, Han J S, Fang X W 2010 Sci. China Inf. Sci. 53 506Google Scholar

    [41]

    Wei X, Guo L, Zhang Q, Zhang J, Lian S G 2012 J. Syst. Softw. 85 290Google Scholar

    [42]

    Niu Y, Zhang X, Han F 2017 Comput. Intell. Neurosci. 2017

    [43]

    Kalsi S, Kaur H, Chang V 2018 J. Med. Syst. 42 1Google Scholar

    [44]

    Basu S, Karuppiah M, Nasipuri M, Halder A K, Radhakrishnan 2019 J. Syst. Archit. 94 24Google Scholar

    [45]

    Biswas M R, Alam K M R, Tamura S, Morimoto Y 2019 J. Syst. Archit. 48 102363

    [46]

    Huang L, Wang S, Xiang J, Sun Y 2020 Math. Prob. Eng. 2020

    [47]

    Alghafis A, Firdousi F, Khan M, Batool A L, Amin M 2020 Math. Comput. Simul. 177 441Google Scholar

    [48]

    Eswaran P, Shankar K 2017 Int. J. Pure Appl. Math. 118 393

    [49]

    Lu Q, Zhu C, Deng X 2020 IEEE Access 8 25664Google Scholar

    [50]

    Wang Y, Ye S C, Wang Y 2020 Microelectron. Comput. 37 71

  • 图 1  双方向格点上交替量子随机行走

    Figure 1.  Alternating quantum random walking on the bidirectional grid.

    图 2  算法流程图

    Figure 2.  Algorithm flowchart

    图 3  加密算法仿真效果图

    Figure 3.  Encryption algorithm simulation renderings.

    图 4  Lena图像加密前后相关性分析

    Figure 4.  Correlation analysis of images before and after Lena encryption.

    图 6  小猫图像加密前后相关性分析

    Figure 6.  Correlation analysis of images before and after cat encryption.

    图 5  蛋糕图像加密前后相关性分析

    Figure 5.  Correlation analysis of images before and after cake encryption.

    图 7  Lena图像加密前后三通道直方图分析

    Figure 7.  Analysis of R, G, B three-channel histogram before and after lena image encryption.

    表 1  8种DNA编码方案

    Table 1.  Eight DNA coding schemes.

    1 2 3 4 5 6 7 8
    A 00 00 01 01 10 10 11 11
    G 01 10 00 11 00 11 01 10
    C 10 01 11 00 11 00 10 01
    T 11 11 10 10 01 01 00 00
    注: 满足DNA的生物学特性A-T互补、G-C互补.
    DownLoad: CSV

    表 2  DNA编码方案1对应的加法方案1

    Table 2.  Addition plan 1 corresponding to DNA coding plan 1.

    + A G C T
    A A G C T
    G G C T A
    C C T A G
    T T A G C
    DownLoad: CSV

    表 3  DNA编码方案1对应的减法方案1

    Table 3.  DNA coding scheme 1 corresponding to subtraction scheme 1.

    A G C T
    A A G C T
    G T A G C
    C C T A G
    T G C T A
    DownLoad: CSV

    表 4  像素相关性分析数据

    Table 4.  Pixel correlation analysis data.

    图像 方向 数值
    原始图像 加密图像
    Lena 水平 0.9275 0.0017
    垂直 0.9603 –0.0005
    对角 0.8941 0.0007
    小猫 水平 0.9429 0.0026
    垂直 0.9377 0.0009
    对角 0.9097 –0.0012
    蛋糕 水平 0.9229 0.0076
    垂直 0.9056 0.0017
    对角 0.8647 0.0017
    DownLoad: CSV

    表 5  相关性分析数据对比

    Table 5.  Correlation analysis data comparison.

    算法 通道 平均相关性
    本文 Red 水平: 0.0040
    Green 垂直: 0.0010
    Blue 对角: 0.0012
    文献[42] Red 水平: 0.0042
    Green 垂直: 0.0033
    Blue 对角: 0.0024
    文献[49] Red 水平: 0.0025
    Green 垂直: 0.0010
    Blue 对角: 0.0022
    文献[50] Red 水平: 0.0012
    Green 垂直: 0.0011
    Blue 对角: 0.0032
    DownLoad: CSV

    表 6  密钥敏感性分析数据

    Table 6.  Key sensitivity analysis data.

    图像 通道 NPCR UACI
    Lena Red 99.6040% 33.4005%
    Green 99.6195% 33.2311%
    Blue 99.5826% 33.5902%
    小猫 Red 99.6326% 33.6785%
    Green 99.6124% 33.4455%
    Blue 99.6147% 33.5784%
    蛋糕 Red 99.6124% 33.4461%
    Green 99.6528% 33.5315%
    Blue 99.7004% 33.4499%
    DownLoad: CSV

    表 7  NPCR, UACI数据对比

    Table 7.  Comparison of NPCR and UACI data.

    算法 NPCR平均 UACI平均
    本文 99.6257% 33.4835%
    文献[42] 99.5506% 33.4055%
    文献[49] 99.6554% 33.4675%
    文献[50] 99.6150% 33.3900%
    DownLoad: CSV
  • [1]

    Zheng R H, Xiao Y, Su S L, Chen Y H, Shi Z C, Song J, Xia Y, Zheng S B 2021 Phys. Rev. A 103 052402Google Scholar

    [2]

    Kang Y H, Shi Z C, Huang B H, Song J, Xia Y 2020 Phys. Rev. A 101 032322Google Scholar

    [3]

    Long G L 2001 Phys. Rev. A 64 022307Google Scholar

    [4]

    Long G L, Li X, Sun Y 2002 Phys. Lett. A 294 143Google Scholar

    [5]

    Li T, Zhang S, Fu X Q, Wang X, Wang Y, Lin J, Bao W S 2019 Chin. Phys. B 28 120301Google Scholar

    [6]

    Liu F, Zhang X, Xu P A, He Z X, Ma H Y 2020 Int. J. Theor. Phys. 59 3491Google Scholar

    [7]

    Zhou N R, Li J F, Yu Z B, Gong L H, A Farouk 2017 Quantum Inf. Process. 16 1Google Scholar

    [8]

    Gong L H, Li J F, Zhou N R 2018 Laser Phys. Lett. 15 105204Google Scholar

    [9]

    Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F, Guo G C 2021 Phys. Rev. Lett. 126 010503Google Scholar

    [10]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [11]

    Yan Z H, Qin J L, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2021 Fundam. Res. 1 43Google Scholar

    [12]

    Zhao J B, Zhang W B, Ma Y L, Zhang X H, Ma H Y 2020 Appl. Sci. 10 1935Google Scholar

    [13]

    Qiu T H, Li H, Xie M, Liu Q, Ma H Y 2019 Opt. Express 27 27477Google Scholar

    [14]

    Ma H Y, Xu P A, Shao C H, Chen L B, Li J X, Pan Q 2019 Int. J. Theor. Phys. 58 4241Google Scholar

    [15]

    Li H S, Fan P, Xia H Y, Peng H L, Long G L 2020 Sci. China Phys. Mech. 63 1

    [16]

    Zheng R H, Kang Y H, Su S L, Song J, Xia Y 2020 Phys. Rev. A 102 012609Google Scholar

    [17]

    Ma H Y, He Z X, Xu P A, Dong Y M, Fan X K 2020 Quantum Inf. Process 19 1

    [18]

    Xu P A, He Z X, Qiu T H, Ma H Y 2020 Opt. Express 28 12508Google Scholar

    [19]

    Zhou N R, Huang L X, Gong L H, Zheng Q W 2020 Quantum Inf. Process. 19 1

    [20]

    Li H S, Fan P, Xia H Y, Peng H L, Long G L 2020 Sci. China. Phys. Mech. 63 1

    [21]

    Castagnoli G 2016 Found Phys. 46 360Google Scholar

    [22]

    Castagnoli G 2016 Quanta 5 34Google Scholar

    [23]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scr. 89 035101Google Scholar

    [24]

    Li H H, Gong L H, Zhou N R 2020 Chin. Phys. B 29 110304Google Scholar

    [25]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687Google Scholar

    [26]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915Google Scholar

    [27]

    Watrous J 2001 Comput. Syst. Sci. 62 376Google Scholar

    [28]

    Abd El-Latif A A, Abd-El-Atty B, Venegas-Andraca S E, Elwahsh H, Piran M J, Bashir A K, Song O, Mazurczyk W 2020 IEEE Access 8 92687Google Scholar

    [29]

    Abd-El-Atty B, Iliyasu A M, Alaskar H, Abd El-Latif A A 2020 Sensors 20 3108Google Scholar

    [30]

    Abd EL-Latif A A, Abd-El-Atty B, Venegas-Andraca S E 2020 Physica A 547 123869Google Scholar

    [31]

    Abd El-Latif A A, Abd-El-Atty B, Elseuofi S, Khalifa H S, Alghamdi A S, Polat K, Amin M 2020 Physica A 541 123687Google Scholar

    [32]

    Abd-El-Atty B, Amin M, Iliyasu A M 2020 Sci. Rep. 10

    [33]

    Godsil C, Zhan H 2019 J. Comb. Theory Ser. A 167 181Google Scholar

    [34]

    Abd-El-Atty B, Iliyasu A M, Alanezi A, Abd EL-Latif A A 2021 Opt. Lasers Eng. 138 106403Google Scholar

    [35]

    Adleman L M 1994 Science 266 1021Google Scholar

    [36]

    Leier A, Richter C, Banzhaf W, Rauhe H 2000 Biosystems 57 13Google Scholar

    [37]

    Chen J 2003 Proceedings of the 2003 International Symposium on Circuits and Systems ISCAS'03. IEEE 2003 3 III-III.

    [38]

    Chang W L, Guo M, Ho M S H 2005 IEEE Trans Nanobiosci. 4 149Google Scholar

    [39]

    Lu M X, Lai X J, Xiao G Z, Qin L 2007 Sci. China Inf. Sci. 50 324Google Scholar

    [40]

    Lai X J, Lu M X, Qin L, Han J S, Fang X W 2010 Sci. China Inf. Sci. 53 506Google Scholar

    [41]

    Wei X, Guo L, Zhang Q, Zhang J, Lian S G 2012 J. Syst. Softw. 85 290Google Scholar

    [42]

    Niu Y, Zhang X, Han F 2017 Comput. Intell. Neurosci. 2017

    [43]

    Kalsi S, Kaur H, Chang V 2018 J. Med. Syst. 42 1Google Scholar

    [44]

    Basu S, Karuppiah M, Nasipuri M, Halder A K, Radhakrishnan 2019 J. Syst. Archit. 94 24Google Scholar

    [45]

    Biswas M R, Alam K M R, Tamura S, Morimoto Y 2019 J. Syst. Archit. 48 102363

    [46]

    Huang L, Wang S, Xiang J, Sun Y 2020 Math. Prob. Eng. 2020

    [47]

    Alghafis A, Firdousi F, Khan M, Batool A L, Amin M 2020 Math. Comput. Simul. 177 441Google Scholar

    [48]

    Eswaran P, Shankar K 2017 Int. J. Pure Appl. Math. 118 393

    [49]

    Lu Q, Zhu C, Deng X 2020 IEEE Access 8 25664Google Scholar

    [50]

    Wang Y, Ye S C, Wang Y 2020 Microelectron. Comput. 37 71

  • [1] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] Liu Han-Yang, Hua Nan, Wang Yi-Nuo, Liang Jun-Qing, Ma Hong-Yang. Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos. Acta Physica Sinica, 2022, 71(17): 170303. doi: 10.7498/aps.71.20220466
    [3] Fang Jie, Jiang Ming-Hao, An Xiao-Yu, Sun Jun-Wei. "One image corresponding to one key" image encryption algorithm based on chaotic encryption and DNA encoding. Acta Physica Sinica, 2021, 70(7): 070501. doi: 10.7498/aps.70.20201642
    [4] Li Bao-Min, Hu Ming-Liang, Fan Heng. Quantum coherence. Acta Physica Sinica, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [5] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [6] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [7] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [8] Li Zhuo, Xing Li-Juan. Error bases, group algebra and quantum codes. Acta Physica Sinica, 2013, 62(13): 130306. doi: 10.7498/aps.62.130306
    [9] Peng Jin-Ye, Wang Yun-Jiang, Wang Xin-Mei, Bai Bao-Ming. Feedback sum-product decoding of sparse quantum codes for X-Z Pauli channels. Acta Physica Sinica, 2011, 60(3): 030306. doi: 10.7498/aps.60.030306
    [10] Xing Li-Juan, Li Zhuo, Zhang Wu-Jun. Strengthened quantum Hamming bound. Acta Physica Sinica, 2011, 60(5): 050304. doi: 10.7498/aps.60.050304
    [11] Wang Yun-Jiang, Bai Bao-Ming, Wang Xin-Mei. Feedback iterative decoding of sparse quantum codes. Acta Physica Sinica, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [12] Jiang Fu-Shi, Zhao Cui-Lan. The phonon effect of qubit in quantum ring. Acta Physica Sinica, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [13] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [14] Xing Li-Juan, Li Zhuo, Bai Bao-Ming, Wang Xin-Mei. Encoding and decoding of quantum convolutional codes. Acta Physica Sinica, 2008, 57(8): 4695-4699. doi: 10.7498/aps.57.4695
    [15] Li Zhuo, Xing Li-Juan. Quantum Generalized Reed-Solomon codes. Acta Physica Sinica, 2008, 57(1): 28-30. doi: 10.7498/aps.57.28
    [16] Wang Zi-Wu, Xiao Jing-Lin. Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Physica Sinica, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [17] Li Zhuo, Xing Li-Juan. A family of asymptotically good quantum codes based on code concatenation. Acta Physica Sinica, 2007, 56(10): 5602-5606. doi: 10.7498/aps.56.5602
    [18] Zhang Quan, Tang Chao-Jing, Zhang Shen-Qiang. . Acta Physica Sinica, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [19] Zhang Quan, Zhang Er-Yang. . Acta Physica Sinica, 2002, 51(8): 1684-1689. doi: 10.7498/aps.51.1684
    [20] Zhang Quan, Tang Chao-Jing, Gao Feng. . Acta Physica Sinica, 2002, 51(1): 15-20. doi: 10.7498/aps.51.15
Metrics
  • Abstract views:  5188
  • PDF Downloads:  213
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2021
  • Accepted Date:  04 August 2021
  • Available Online:  20 August 2021
  • Published Online:  05 December 2021

/

返回文章
返回