Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos

Liu Han-Yang Hua Nan Wang Yi-Nuo Liang Jun-Qing Ma Hong-Yang

Citation:

Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos

Liu Han-Yang, Hua Nan, Wang Yi-Nuo, Liang Jun-Qing, Ma Hong-Yang
PDF
HTML
Get Citation
  • With the development of computer network technology, people’s requirements for information security is increasing day by day. However, the classical encryption technology has the defects of small key space and easy crack. The problems of image encryption technology in protecting image information security and private content need solving urgently. As a new type of quantum key generator, quantum random walk has a large key space. Compared with the classical random walk, the computing speed and security are significantly improved. This paper presents a three-dimensional image encryption algorithm that is based on quantum random walk and involves Lorenz and Rossler multidimensional chaos. Firstly, Gaussian pyramid is used to segment the image. Secondly, the Hamming distances of several sub images are calculated by using the random sequence generated by quantum random walk and the random sequence generated by Lorenz chaotic system in multi-dimensional chaos, and then synthesized, and the Euclidean distances between the three RGB channels of the image are calculated. Finally, the sequence value obtained from the remainder of Hamming distance and Euclidean distance, as an initial value is input into the Rossler system in multi-dimensional chaos to generate a random sequence which is used as the key to XOR the RGB channel of the image so as to create an encrypted image. The corresponding decryption scheme is the inverse process of the encryption process. In addition, in terms of transmission security, this paper uses a blind watermark embedding algorithm based on DCT and SVD to embed the watermark information into the encrypted image, so that the receiver can extract the watermark and judge whether the image is damaged by the attack in the transmission process according to the integrity of the watermark information. If it is not attacked maliciously, the image will be decrypted. This operation further improves the protection of image information security.The experimental results show that the peak signal-to-noise ratio of the encrypted image is stable between 7 and 9 and the encryption effect is good, the GVD score is close to 1, the correlation of the encrypted image is uniformly distributed, and the correlation coefficient is close to 0, and the key space is 2128 in size and the encrypted histogram is evenly distributed, showing a high ability to resist statistical analysis attacks.
      Corresponding author: Ma Hong-Yang, hongyang_ma@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132, 61772295), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019YQ01), the Project of Shandong Province Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J18KZ012), and the Joint Fund of Shandong Natural Science Foundation, China (Grant No. ZR202108020011)
    [1]

    Zheng R H, Xiao Y, Su S L, Chen Y H, Shi Z C, Song J, Xia Y, Zheng S B 2021 Phys. Rev. A 103 052402Google Scholar

    [2]

    Kang Y H, Shi Z C, Huang B H, Song J, Xia Y 2020 Phys. Rev. A 101 032322

    [3]

    Long G L 2001 Phys. Rev. A 64 022307Google Scholar

    [4]

    Long G L, Li X, Sun Y 2002 Phys. Lett. A 294 143Google Scholar

    [5]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687

    [6]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915Google Scholar

    [7]

    Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D A 2003 STOC’03: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing (New York: Association for Computing Machinery) pp59–68

    [8]

    Castagnoli G 2016 Found. Phys. 46 360Google Scholar

    [9]

    Castagnoli G 2016 Quanta. 5 34

    [10]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scr. 89 035101Google Scholar

    [11]

    Li H H, Gong L H, Zhou N R 2020 Chin. Phys. B 29 110304Google Scholar

    [12]

    Watrous J 2001 J. Comput. Syst. Sci. 62 376Google Scholar

    [13]

    Abd El-Latif A A, Abd-El-Atty B, Venegas-Andraca S E, Elwahsh H, Piran M J, Bashir A K, Song O Y, Mazurczyk W, 2020 IEEE Access 8 92687

    [14]

    Abd-El-Atty B, Iliyasu A M, Alaskar H, Alaskar H, Abd-El-Latif A A 2020 Sensors 20 3108Google Scholar

    [15]

    Abd El-Latif A A, Abd-El-Atty B, Mazurczyk W, Fung C, Venegas-Andraca S E 2020 IEEE Trans. Netw. Serv. Manage. 17 118Google Scholar

    [16]

    Abd El-Latif A A, Abd-El-Atty B, Elseuofi S, Khalifa H S, Alghamdi A S, Polat K, Amin M 2020 Physica A 541 123687Google Scholar

    [17]

    Abd El-Latif A A, Abd-El-Atty B, Amin M, Iliyasu A M 2020 Sci. Rep. 10 1Google Scholar

    [18]

    Abd-El-Atty B, Iliyasu A M, Alanezi A, Abd El-latif AA 2021 Opt. Lasers Eng. 138 106403

    [19]

    Smith J D, Hill A J, Reeder L E, Franke B C, Lehoucp R B, Parekh O, Severa, M, Aimone J B 2022 Nat. Electron. 5 102Google Scholar

    [20]

    Godsil C, Zhan H M 2019 J. Comb. Theory A 167 181Google Scholar

    [21]

    Singh S, Chawla P, Sarkar A, Chandrashekar C M 2021 Sci. Rep. 11 1

    [22]

    Tsafack N, Kengne J, Abd-El-Atty B, Iliyasu A M, Hirota K, Abd EL-Latif A A 2020 Inf. Sci. 515 191Google Scholar

    [23]

    王一诺, 宋昭阳, 马玉林, 华南, 马鸿洋 2021 物理学报 70 10

    Wang Y N, Song Z Y, Ma Y L, Hua N, Ma H Y 2021 Acta Phys. Sin. 70 10

    [24]

    Kocarev L 2001 IEEE. Circ. Syst. Mag. 1 6

    [25]

    Guan Z H, Huang F J, Guan W J 2005 Phys. Lett. A 346 153Google Scholar

    [26]

    Lian S G, Sun J S, Wang Z Q 2005 Physica A 351 645Google Scholar

    [27]

    Xiao D, Liao X F, Wei P C 2009 Chaos. Solitons Fractals 40 2191

    [28]

    Zhang X P, Zhao Z M, Wang J Y 2014 Signal Process. Image Commun. 29 902Google Scholar

    [29]

    Assad S E, Farajallah M 2016 Signal Process. Image Commun. 41 144Google Scholar

    [30]

    Wang M G, Wang X Y, Zhang Y Q, Zhou S, Zhao T T, Yao N M 2019 Opt. Lasers Eng. 121 479Google Scholar

    [31]

    Kumar V, Girdhar A 2021 Multimed Tools Appl. 80 3749

    [32]

    Huang W, Jiang D H, An Y S, Liu L D, Wang X Y 2021 IEEE Access 9 41704Google Scholar

    [33]

    Rakesh S, Kaller A A, Shadakshari B C, Annappa B 2012 IJCIS 2 49

    [34]

    Huang X L, Ye G D 2014 Commun. Nonlinear Sci. 19 4094Google Scholar

    [35]

    Wang M X, Wang X Y, Zhang Y Q, Zheng G 2018 Opt. Laser Technol. 108 558Google Scholar

    [36]

    Zhou W J, Wang X Y, Wang M X, Li D Y 2022 Opt. Laser Eng. 149 106782Google Scholar

  • 图 1  量子随机行走

    Figure 1.  Quantum random walk

    图 2  Rossler混沌模型

    Figure 2.  Rossler chaotic model

    图 3  Lorenz混沌模型

    Figure 3.  Lorenz chaotic model

    图 4  高斯金字塔结构图

    Figure 4.  Gaussian pyramid structure

    图 5  Arnold变换

    Figure 5.  Arnold transform

    图 6  密钥生成

    Figure 6.  Key generation

    图 7  水印嵌入与提取

    Figure 7.  Watermark embedding and extraction

    图 8  加密-水印算法流程图

    Figure 8.  Encryption watermark algorithm flow chart

    图 9  加密仿真结果

    Figure 9.  Encryption simulation results

    图 10  加密算法

    Figure 10.  Encryption algorithm

    图 12  原始图像1和加密图像1的性能分析直方图

    Figure 12.  Performance analysis histogram of original image 1 and encrypted image 1

    图 13  原始图像2和加密图像2的3D直方图

    Figure 13.  3D histogram of original image 2 and encrypted image 2

    图 14  原始图像2和加密图像2的性能分析直方图

    Figure 14.  Performance analysis histogram of original image 2 and encrypted image 2

    图 15  原始图像3和加密图像3的3D直方图

    Figure 15.  3D histogram of original image 3 and encrypted image 3

    图 16  原始图像3和加密图像3的性能分析直方图

    Figure 16.  Performance analysis histogram of original image 3 and encrypted image 3

    图 17  原始图像4和加密图像4的3D直方图

    Figure 17.  3D histogram of original image 4 and encrypted image 4

    图 11  原始图像1和加密图像1的3D直方图

    Figure 11.  3D histogram of original image 1 and encrypted image 1

    图 18  原始图像4和加密图像4的性能分析直方图

    Figure 18.  Performance analysis histogram of original image 4 and encrypted image 4

    图 19  原始图像1和加密图像1的相关性

    Figure 19.  Correlation between original image 1 and encrypted image 1

    图 20  原始图像2和加密图像2的相关性

    Figure 20.  Correlation between original image 2 and encrypted image 2

    图 21  原始图像3和加密图像3的相关性

    Figure 21.  Correlation between original image 3 and encrypted image 3

    图 22  原始图像4和加密图像4的相关性

    Figure 22.  Correlation between original image 4 and encrypted image 4

    图 23  高斯噪声

    Figure 23.  Gaussian noise

    表 1  原始图像1和加密图像1的相关性数值分析

    Table 1.  Numerical analysis of correlation between original image 1 and encrypted image 1

    图像通道HorizontalVerticalDiagonal
    图像1R0.99850.99900.9976
    G0.99800.99880.9973
    B0.99800.99910.9975
    加密图像1R–0.0136–0.0325–0.0304
    G0.03040.00140.0251
    B–0.02340.02210.0051
    DownLoad: CSV

    表 2  原始图像2和加密图像2的相关性数值分析

    Table 2.  Numerical analysis of correlation between original image 2 and encrypted image 2

    图像通道HorizontalVerticalDiagonal
    图像2R0.99100.98580.9752
    G0.99540.99410.9883
    B0.99690.99620.9930
    加密图像2R–0.0136–0.0325–0.0304
    G0.03040.00140.0251
    B–0.02340.02210.0051
    DownLoad: CSV

    表 3  原始图像3和加密图像3的相关性数值分析

    Table 3.  Numerical analysis of correlation between original image 3 and encrypted image 3

    图像通道HorizontalVerticalDiagonal
    图像3R0.92930.96310.8961
    G0.90770.95220.8648
    B0.90110.93790.8484
    加密图像3R–0.0069–0.0081–0.0218
    G–0.00700.0065–0.0245
    B–0.01170.0249–0.0134
    DownLoad: CSV

    表 4  原始图像4和加密图像4的相关性数值分析

    Table 4.  Numerical analysis of correlation between original image 4 and encrypted image 4

    图像通道HorizontalVerticalDiagonal
    图像4R0.95680.97500.9379
    G0.94490.96650.9170
    B0.95400.97460.9346
    加密图像4R–0.0162–0.00550.0147
    G0.00060.0003–0.0060
    B0.0207–0.02910.0017
    DownLoad: CSV

    表 5  GVD

    Table 5.  GVD

    GVD原始-加密
    图像1
    原始-加密
    图像2
    原始-加密
    图像3
    原始-加密
    图像4
    R0.99930.9950.97550.9809
    G0.99930.99470.97630.9815
    B0.99930.9950.98040.9826
    DownLoad: CSV

    表 6  密钥敏感性分析

    Table 6.  Key sensitivity analysis

    图像通道NPCR/%UACI/%
    图像1R99.568733.4381
    G99.609833.4594
    B99.618033.4347
    图像2R99.569033.4386
    G99.610033.4598
    B99.618633.4350
    图像3R99.568433.4378
    G99.609433.4588
    B99.617433.4437
    图像4R99.568833.4376
    G99.608833.4590
    B99.617033.4347
    DownLoad: CSV

    表 7  峰值信噪比

    Table 7.  Peak signal to noise ratio

    PSNR原始-加密
    图像1
    原始-加密
    图像2
    原始-加密
    图像3
    原始-加密
    图像4
    R7.6918.3769.3699.582
    G7.7558.1328.6869.193
    B7.4797.7476.7827.782
    DownLoad: CSV

    表 8  嵌入水印的峰值信噪比

    Table 8.  Peak signal to noise ratio of embedded watermark

    PSNR加密-嵌入
    水印1
    加密-嵌入
    水印2
    加密-嵌入
    水印3
    加密-嵌入
    水印4
    R38.8138.8138.838.79
    G40.2840.2940.2640.28
    B35.4635.4835.4735.47
    DownLoad: CSV
  • [1]

    Zheng R H, Xiao Y, Su S L, Chen Y H, Shi Z C, Song J, Xia Y, Zheng S B 2021 Phys. Rev. A 103 052402Google Scholar

    [2]

    Kang Y H, Shi Z C, Huang B H, Song J, Xia Y 2020 Phys. Rev. A 101 032322

    [3]

    Long G L 2001 Phys. Rev. A 64 022307Google Scholar

    [4]

    Long G L, Li X, Sun Y 2002 Phys. Lett. A 294 143Google Scholar

    [5]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687

    [6]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915Google Scholar

    [7]

    Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D A 2003 STOC’03: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing (New York: Association for Computing Machinery) pp59–68

    [8]

    Castagnoli G 2016 Found. Phys. 46 360Google Scholar

    [9]

    Castagnoli G 2016 Quanta. 5 34

    [10]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scr. 89 035101Google Scholar

    [11]

    Li H H, Gong L H, Zhou N R 2020 Chin. Phys. B 29 110304Google Scholar

    [12]

    Watrous J 2001 J. Comput. Syst. Sci. 62 376Google Scholar

    [13]

    Abd El-Latif A A, Abd-El-Atty B, Venegas-Andraca S E, Elwahsh H, Piran M J, Bashir A K, Song O Y, Mazurczyk W, 2020 IEEE Access 8 92687

    [14]

    Abd-El-Atty B, Iliyasu A M, Alaskar H, Alaskar H, Abd-El-Latif A A 2020 Sensors 20 3108Google Scholar

    [15]

    Abd El-Latif A A, Abd-El-Atty B, Mazurczyk W, Fung C, Venegas-Andraca S E 2020 IEEE Trans. Netw. Serv. Manage. 17 118Google Scholar

    [16]

    Abd El-Latif A A, Abd-El-Atty B, Elseuofi S, Khalifa H S, Alghamdi A S, Polat K, Amin M 2020 Physica A 541 123687Google Scholar

    [17]

    Abd El-Latif A A, Abd-El-Atty B, Amin M, Iliyasu A M 2020 Sci. Rep. 10 1Google Scholar

    [18]

    Abd-El-Atty B, Iliyasu A M, Alanezi A, Abd El-latif AA 2021 Opt. Lasers Eng. 138 106403

    [19]

    Smith J D, Hill A J, Reeder L E, Franke B C, Lehoucp R B, Parekh O, Severa, M, Aimone J B 2022 Nat. Electron. 5 102Google Scholar

    [20]

    Godsil C, Zhan H M 2019 J. Comb. Theory A 167 181Google Scholar

    [21]

    Singh S, Chawla P, Sarkar A, Chandrashekar C M 2021 Sci. Rep. 11 1

    [22]

    Tsafack N, Kengne J, Abd-El-Atty B, Iliyasu A M, Hirota K, Abd EL-Latif A A 2020 Inf. Sci. 515 191Google Scholar

    [23]

    王一诺, 宋昭阳, 马玉林, 华南, 马鸿洋 2021 物理学报 70 10

    Wang Y N, Song Z Y, Ma Y L, Hua N, Ma H Y 2021 Acta Phys. Sin. 70 10

    [24]

    Kocarev L 2001 IEEE. Circ. Syst. Mag. 1 6

    [25]

    Guan Z H, Huang F J, Guan W J 2005 Phys. Lett. A 346 153Google Scholar

    [26]

    Lian S G, Sun J S, Wang Z Q 2005 Physica A 351 645Google Scholar

    [27]

    Xiao D, Liao X F, Wei P C 2009 Chaos. Solitons Fractals 40 2191

    [28]

    Zhang X P, Zhao Z M, Wang J Y 2014 Signal Process. Image Commun. 29 902Google Scholar

    [29]

    Assad S E, Farajallah M 2016 Signal Process. Image Commun. 41 144Google Scholar

    [30]

    Wang M G, Wang X Y, Zhang Y Q, Zhou S, Zhao T T, Yao N M 2019 Opt. Lasers Eng. 121 479Google Scholar

    [31]

    Kumar V, Girdhar A 2021 Multimed Tools Appl. 80 3749

    [32]

    Huang W, Jiang D H, An Y S, Liu L D, Wang X Y 2021 IEEE Access 9 41704Google Scholar

    [33]

    Rakesh S, Kaller A A, Shadakshari B C, Annappa B 2012 IJCIS 2 49

    [34]

    Huang X L, Ye G D 2014 Commun. Nonlinear Sci. 19 4094Google Scholar

    [35]

    Wang M X, Wang X Y, Zhang Y Q, Zheng G 2018 Opt. Laser Technol. 108 558Google Scholar

    [36]

    Zhou W J, Wang X Y, Wang M X, Li D Y 2022 Opt. Laser Eng. 149 106782Google Scholar

  • [1] Wang Wei-Jie, Jiang Mei-Mei, Wang Shu-Mei, Qu Ying-Jie, Ma Hong-Yang, Qiu Tian-Hui. Quantum image chaos encryption scheme based on quantum long-short term memory network. Acta Physica Sinica, 2023, 72(12): 120301. doi: 10.7498/aps.72.20230242
    [2] Zhao Zhi-Peng, Zhou Shuang, Wang Xing-Yuan. A new chaotic signal based on deep learning and its application in image encryption. Acta Physica Sinica, 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [3] Fang Jie, Jiang Ming-Hao, An Xiao-Yu, Sun Jun-Wei. "One image corresponding to one key" image encryption algorithm based on chaotic encryption and DNA encoding. Acta Physica Sinica, 2021, 70(7): 070501. doi: 10.7498/aps.70.20201642
    [4] Wang Yi-Nuo, Song Zhao-Yang, Ma Yu-Lin, Hua Nan, Ma Hong-Yang. Color image encryption algorithm based on DNA code and alternating quantum random walk. Acta Physica Sinica, 2021, 70(23): 230302. doi: 10.7498/aps.70.20211255
    [5] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [6] Zhuang Zhi-Ben, Li Jun, Liu Jing-Yi, Chen Shi-Qiang. Image encryption algorithm based on new five-dimensional multi-ring multi-wing hyperchaotic system. Acta Physica Sinica, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [7] Wang Xue-Guang, Li Ming, Yu Na-Na, Xi Si-Xing, Wang Xiao-Lei, Lang Li-Ying. Multiple-image encryption method based on spatial angle multiplexing and double random phase encoding. Acta Physica Sinica, 2019, 68(24): 240503. doi: 10.7498/aps.68.20191362
    [8] Shi Hang, Wang Li-Dan. Multi-process image encryption scheme based on compressed sensing and multi-dimensional chaotic system. Acta Physica Sinica, 2019, 68(20): 200501. doi: 10.7498/aps.68.20190553
    [9] Guan Guo-Rong, Wu Cheng-Mao, Jia Qian. An improved high performance Lorenz system and its application. Acta Physica Sinica, 2015, 64(2): 020501. doi: 10.7498/aps.64.020501
    [10] Peng Zai-Ping, Wang Chun-Hua, Lin Yuan, Luo Xiao-Wen. A novel four-dimensional multi-wing hyper-chaotic attractor and its application in image encryption. Acta Physica Sinica, 2014, 63(24): 240506. doi: 10.7498/aps.63.240506
    [11] Ai Xing-Xing, Sun Ke-Hui, He Shao-Bo, Wang Hui-Hai. Design and application of multi-scroll chaotic attractors based on simplified Lorenz system. Acta Physica Sinica, 2014, 63(12): 120511. doi: 10.7498/aps.63.120511
    [12] Deng Hai-Tao, Deng Jia-Xian, Deng Xiao-Mei. Joint compression and tree structure encryption algorithm based on EZW. Acta Physica Sinica, 2013, 62(11): 110701. doi: 10.7498/aps.62.110701
    [13] Lin Yuan, Wang Chun-Hua, Xu Hao. Grid multi-scroll chaotic attractors in hybrid image encryption algorithm based on current conveyor. Acta Physica Sinica, 2012, 61(24): 240503. doi: 10.7498/aps.61.240503
    [14] Zhou Wu-Jie, Yu Mei, Yu Si-Min, Jiang Gang-Yi, Ge Ding-Fei. A zero-watermarking algorithm of stereoscopic image based on hyperchaotic system. Acta Physica Sinica, 2012, 61(8): 080701. doi: 10.7498/aps.61.080701
    [15] Zhu Cong-Xu, Sun Ke-Hui. Cryptanalysis and improvement of a class of hyperchaos based image encryption algorithms. Acta Physica Sinica, 2012, 61(12): 120503. doi: 10.7498/aps.61.120503
    [16] Wang Jing, Jiang Guo-Ping. Cryptanalysis of a hyper-chaotic image encryption algorithm and its improved version. Acta Physica Sinica, 2011, 60(6): 060503. doi: 10.7498/aps.60.060503
    [17] Sun Fu-Yan, Lv Zong-Wang. Cryptographic spatial chaos sequence. Acta Physica Sinica, 2011, 60(4): 040503. doi: 10.7498/aps.60.040503
    [18] Jin Jian-Xiu, Qiu Shui-Sheng. Cascaded image encryption systems based on physical chaos. Acta Physica Sinica, 2010, 59(2): 792-800. doi: 10.7498/aps.59.792
    [19] Duan Li-Li, Liao Xiao-Feng, Xiang Tao. Image encryption based on arithmetic coding with order-1 Markov model. Acta Physica Sinica, 2010, 59(10): 6744-6751. doi: 10.7498/aps.59.6744
    [20] He Wen-Qi, Qin Wan, Peng Xiang, Guo Ji-Ping, Li A-Meng, Cai Lü-Zhong, Meng Xiang-Feng. Optimized two-step phase-shifting algorithm applied to image encryption. Acta Physica Sinica, 2010, 59(9): 6118-6124. doi: 10.7498/aps.59.6118
Metrics
  • Abstract views:  4938
  • PDF Downloads:  149
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2022
  • Accepted Date:  14 April 2022
  • Available Online:  13 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回