Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Image encryption algorithm based on new five-dimensional multi-ring multi-wing hyperchaotic system

Zhuang Zhi-Ben Li Jun Liu Jing-Yi Chen Shi-Qiang

Citation:

Image encryption algorithm based on new five-dimensional multi-ring multi-wing hyperchaotic system

Zhuang Zhi-Ben, Li Jun, Liu Jing-Yi, Chen Shi-Qiang
PDF
HTML
Get Citation
  • The complex structure of hyperchaos and its complex dynamic behavior have a good application prospect in the fields of image encryption, digital watermarking and information security. Therefore, it has become very important to generate chaotic attractors with multi-vortex and multi-winged multi-rings with complex topologies. In this paper, we propose a new five-dimensional hyperchaotic system capable of generating multi-ring and multi-wing, and carry out theoretical analysis and numerical simulation experiments on some basic dynamic characteristics of the chaotic system. Such as equilibrium point, dissipation, Lyapunov exponent, bifurcation diagram, phase diagram and so on. In the process of encryption, first, we decompose the plaintext image matrix and the five chaotic sequences into an orthogonal matrix and an upper triangular matrix by QR decomposition. The five chaotic sequences generated by the chaotic system are respectively decomposed into an upper triangular matrix and a lower triangular matrix by the LU decomposition method. The upper triangular matrix decomposed by the QR decomposition method and the lower triangular matrix decomposed by the LU decomposition method are respectively added to obtain five discrete chaotic sequences. At the same time, the five discrete chaotic sequences are added to the upper triangular matrix decomposed by the LU decomposition method to obtain the final five discrete chaotic sequences. Secondly, the orthogonal matrix decomposed by the plaintext image matrix is multiplied by five orthogonal matrices decomposed by five chaotic sequences. At the same time, the elements in the upper triangular matrix decomposed by the plaintext image matrix are chaotically arranged by the chaotic sequence, and then the two matrices after the operation are multiplied. Finally, the multiplied matrix is chaotically placed on the bit by a chaotic sequence. Then use the chaotic sequence to perform a bitwise XOR operation to obtain the final encrypted image. The theoretical analysis and simulation results show that the algorithm has large key space and strong key sensitivity. It can effectively resist the attacks of statistical analysis and gray value analysis, and has good encryption effect on digital image encryption. This image encryption algorithm using a combination of conventional encryption and chaotic encryption does not have a defined plaintext ciphertext mapping relationship.
      Corresponding author: Chen Shi-Qiang, chensq8808@126.com
    [1]

    王平, 冯勇, 孙黎霞, 韩凤玲 2002 控制理论与应用 21 1Google Scholar

    Wang P, Feng Y, Sun L X, Han F L 2002 Control Theory & Appl. 21 1Google Scholar

    [2]

    禹思敏 2005 物理学报 54 1500Google Scholar

    Yu S M 2005 Acta Phys.Sin. 54 1500Google Scholar

    [3]

    Karthikeyan R, Serdar C, Peiman N, Abdul J M, Sajad J, Anitha K 2018 Eur. Phys. J. Plus 133 354Google Scholar

    [4]

    贾美美, 蒋浩刚, 李文静 2019 物理学报 68 130503Google Scholar

    Jia M M, Jiang H G, Li W J 2019 Acta Phys. Sin. 68 130503Google Scholar

    [5]

    Li Y X, Tang W K S, Chen G R 2005 Int. J. Bifurcation Chaos. 15 3367Google Scholar

    [6]

    彭再平, 王春华, 林愿, 骆小文 2014 物理学报 63 240506Google Scholar

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506Google Scholar

    [7]

    刘杨 2015 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu Y 2015 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [8]

    禹思敏 2018 新型混沌电路与系统的设计原理及其应用 (北京: 科学出版社) 第139—155页

    Yu S M 2018 Design Principles and Applications of New Chaotic Circuits and Systems (Beijing: Science Press) pp139– 155 (in Chinese)

    [9]

    Zhang L H, Liao X F, Wang X B 2005 Chaos, Solitons Fractals 24 759Google Scholar

    [10]

    Wong K, Kwor B, Law W 2008 Phys. Lett. A 372 2645Google Scholar

    [11]

    Zhang W, Yu H, Zhao Y L, Zhu Z L 2016 Signal Process. 118 36Google Scholar

    [12]

    Luo Y L, Zhou R L, Liu J X, Gao Y, Ding X M 2018 Nonlinear Dyn. 4 1

    [13]

    Ye G D, Pan C, Huang X L, Mei Q X 2018 Nonlinear Dyn. 20 18

    [14]

    Abanda Y, Tiedeu A 2016 IET Image Proc. 10 742Google Scholar

    [15]

    Zhang Y 2018 Inf. Sci. 255 31145

    [16]

    He Y, Zhang Y Q, Wang X Y 2018 Neural Comput. Appl. 10 1

    [17]

    Raza S F, Satpute V 2018 Nonlinear Dyn. 254 1

    [18]

    Ahmad J, Khan M A, Hwang S O, Khan J S 2017 Neural Comput. Appl. 28 953

    [19]

    Ahmad J, Khan M A, Ahmed F, Khan J S 2018 Neural Comput. Appl. 3 1

    [20]

    Sprott J C 1994 Phys. Rev. E 50 647Google Scholar

    [21]

    Enayatifar R, Abdullah A H, Isnin I F, Altameem A, Lee A 2017 Opt. Lasers Eng. 90 146Google Scholar

    [22]

    Liu H J, Wang X Y, Kadir A 2012 Appl. Soft Comput. 12 1457Google Scholar

  • 图 1  Lyapunov指数谱

    Figure 1.  Lyapunov exponent diagram.

    图 2  系统(2)随$f$变化的分岔图

    Figure 2.  Bifurcation diagram of system (2) variation with $f$.

    图 3  时间序列图 (a) $x\text- t$时间序列; (b) $y \text- t$时间序列; (c) $z \text- t$时间序列; (d) $w \text- t$时间序列; (e) $v \text- t$时间序列

    Figure 3.  Time series diagram: (a) $x \text- t$ time series; (b) $y \text- t$ time series; (c) $z \text- t$ time series; (d) $w \text- t$ time series; (e) $v \text- t$time series

    图 4  三维相图 (a) $x \text- y \text- z$三维图; (b) $x \text- y \text- w$三维图; (c) $x \text- y \text- v$三维图; (d) $x \text- z \text- w$三维图; (e) $x \text- z \text- v$三维图; (f) $x \text- w \text- v$三维图; (g) $y \text- z \text- w$三维图; (h) $y \text- z \text- v$三维图; (i) $y \text- w \text- v$三维图; (j) $z \text- w \text- v$三维图

    Figure 4.  Three-dimensional phase diagram: (a) $x \text- y \text- z$ Three-dimensional map; (b) $x \text- y \text- w$ Three-dimensional map; (c) $x \text- y \text- v$ Three-dimensional map; (d) $x \text- z \text- w$ Three-dimensional map; (e) $x \text- z \text- v$ Three-dimensional map; (f) $x \text- w \text- v$ Three-dimensional map; (g) $y \text- z \text- w$ Three-dimensional map; (h) $y \text- z \text- v$ Three-dimensional map; (i) $x \text- y \text- z$ Three-dimensional map; (j) $z \text- w \text- v$ Three-dimensional map.

    图 5  二维平面相图 (a) $x \text- y$平面; (b) $x \text- z$平面; (c) $x \text- v$平面; (d) $y \text- z$平面; (e) $y \text- w$平面; (f) $z \text- w$平面; (g) $z \text- v$平面

    Figure 5.  Two-dimensional plane phase diagram: (a) $x \text- y$ flat; (b) $x \text- z$ flat; (c) $x \text- v$ flat; (d) $y \text- z$ flat; (e) $y \text- w$ flat; (f) $z \text- w$ flat; (g) $z \text- v$ flat.

    图 6  数字图像加解密实验图 (a) lena原图; (b) lena加密图像; (c) lena解密图像; (d) baboon原图; (e) baboon加密图像; (f) baboon解密图像; (g) boat原图; (h) boat加密图像; (i) boat解密图像

    Figure 6.  Digital image encryption and decryption experiment: (a) Original Lena image; (b) encrypted Lena image; (c) decrypted Lena image; (d) original baboon image; (e) encrypted baboon image; (f) decrypted baboon image; (g) original boat image.; (h) encrypted boat image; (i)decrypted boat image.

    图 7  明文图像和密文图像直方图 (a) lena明文直方图; (b) lena密文直方图; (c) baboon明文直方图; (d) baboon密文直方图; (e) boat明文直方图; (f) boat密文直方图

    Figure 7.  Histogram of plaintext and ciphertext images (a) Plaintext Lena image histogram; (b) ciphertext Lena image histogram; (c) plaintext baboon image histogram; (d) ciphertext baboon image histogram; (e) plaintext boat image histogram; (f) ciphertext boat image histogram.

    图 8  密钥敏感性测试图 (a)明文图像; (b)密文${{{Y}}_1}$(密钥为${y_0}$); (c)密文${{{Y}}_2}$(密钥为${y_1}$); (d) ${{{Y}}_1}$正确解密结果; (e) ${{{Y}}_1}$${y_1}$错误解密结果; (f) ${{{Y}}_2}$${y_0}$错误解密结果

    Figure 8.  Key sensitivity tests: (a) Plain-image; (b) cipher ${{{Y}}_1}$ with key ${y_0}$; (c) cipher ${{{Y}}_2}$ with key ${y_1}$; (d) right decrypted ${{{Y}}_1}$; (e) decrypted ${{{Y}}_1}$ with ${y_1}$; (f) decrypted${{{Y}}_2}$ with${y_0}$.

    图 9  baboon图像加密前后三个方向上的相关性分析图 (a), (b)对角相邻; (c), (d)水平相邻; (e), (f)垂直相邻;

    Figure 9.  Correlation analysis chart in three directions before and after baboon image encryption: (a), (b) Diagonally adjacent; (c), (d) horizontally adjacent; (e), (f) vertically adjacent.

    图 10  抗剪切攻击能力分析图 (a)剪切前密文; (b)剪切后密文; (c)剪切前解密; (d)剪切后解密

    Figure 10.  Anti-shear attack capability analysis chart: (a) Ciphertext before cutting; (b) ciphertext after cutting; (c) decrypted image before cutting; (d) decrypted image after cutting.

    图 11  抗噪声攻击能力分析图 (a)加噪前密文; (b)加噪后密文; (c)加噪前解密; (d)加噪后解密

    Figure 11.  Anti-noise attack capability analysis chart: (a) Ciphertext before adding noise; (b) ciphertext after adding noise; (c) decrypted image before adding noise; (d) decrypted image after adding noise.

    表 1  明文图像与加密图像的信息熵分析表

    Table 1.  Information entropy analysis table of plain text and encrypted image.

    图像Lena图像Baboon图像Boat图像
    原图像7.46447.37137.1267
    密文图像7.99947.99947.9993
    文献[11]7.99927.9993
    文献[12]7.99947.9993
    文献[13]7.99717.9993
    文献[14]7.9960
    文献[15]7.99937.9993
    文献[16]7.99937.9992
    文献[17]7.9974
    DownLoad: CSV

    表 2  加密图像不动点比分析表

    Table 2.  Encrypted image fixed point ratio analysis table.

    图像总像素数不动点数不动点比
    Lena图像26214410150.39%
    Baboon图像26214410140.39%
    Boat图像2621449990.38%
    DownLoad: CSV

    表 3  灰度平均变化值分析表

    Table 3.  Grayscale average change value analysis table.

    图像Lena图像Baboon图像Boat图像
    灰度平均变化值73.193770.858974.8383
    DownLoad: CSV

    表 4  密钥敏感性测试结果表

    Table 4.  Key sensitivity test result table.

    图像lena图像baboon图像boat图像
    指标NPCRUACINPCRUACINPCRUACI
    本文算法0.99640.33400.99620.33460.99580.3344
    文献[13]0.99620.33470.99600.3340
    文献[14]0.99570.3508
    文献[15]0.99610.33470.99610.3347
    文献[16]0.99620.33440.99610.3349
    DownLoad: CSV

    表 5  明文图像与密文图像相关系数测试结果表

    Table 5.  Plaintext image and ciphertext image correlation coefficient test result table.

    图像水平方向相关系数垂直方向相关系数对角线方向相关系数
    明文图像密文图像明文图像密文图像明文图像密文图像
    Lena0.9762–0.00840.96590.04610.94680.0131
    Baboon0.7204–0.00500.8264–0.00740.7046–0.0322
    boat0.96210.01060.82520.00870.8327–0.0423
    DownLoad: CSV
  • [1]

    王平, 冯勇, 孙黎霞, 韩凤玲 2002 控制理论与应用 21 1Google Scholar

    Wang P, Feng Y, Sun L X, Han F L 2002 Control Theory & Appl. 21 1Google Scholar

    [2]

    禹思敏 2005 物理学报 54 1500Google Scholar

    Yu S M 2005 Acta Phys.Sin. 54 1500Google Scholar

    [3]

    Karthikeyan R, Serdar C, Peiman N, Abdul J M, Sajad J, Anitha K 2018 Eur. Phys. J. Plus 133 354Google Scholar

    [4]

    贾美美, 蒋浩刚, 李文静 2019 物理学报 68 130503Google Scholar

    Jia M M, Jiang H G, Li W J 2019 Acta Phys. Sin. 68 130503Google Scholar

    [5]

    Li Y X, Tang W K S, Chen G R 2005 Int. J. Bifurcation Chaos. 15 3367Google Scholar

    [6]

    彭再平, 王春华, 林愿, 骆小文 2014 物理学报 63 240506Google Scholar

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506Google Scholar

    [7]

    刘杨 2015 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu Y 2015 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [8]

    禹思敏 2018 新型混沌电路与系统的设计原理及其应用 (北京: 科学出版社) 第139—155页

    Yu S M 2018 Design Principles and Applications of New Chaotic Circuits and Systems (Beijing: Science Press) pp139– 155 (in Chinese)

    [9]

    Zhang L H, Liao X F, Wang X B 2005 Chaos, Solitons Fractals 24 759Google Scholar

    [10]

    Wong K, Kwor B, Law W 2008 Phys. Lett. A 372 2645Google Scholar

    [11]

    Zhang W, Yu H, Zhao Y L, Zhu Z L 2016 Signal Process. 118 36Google Scholar

    [12]

    Luo Y L, Zhou R L, Liu J X, Gao Y, Ding X M 2018 Nonlinear Dyn. 4 1

    [13]

    Ye G D, Pan C, Huang X L, Mei Q X 2018 Nonlinear Dyn. 20 18

    [14]

    Abanda Y, Tiedeu A 2016 IET Image Proc. 10 742Google Scholar

    [15]

    Zhang Y 2018 Inf. Sci. 255 31145

    [16]

    He Y, Zhang Y Q, Wang X Y 2018 Neural Comput. Appl. 10 1

    [17]

    Raza S F, Satpute V 2018 Nonlinear Dyn. 254 1

    [18]

    Ahmad J, Khan M A, Hwang S O, Khan J S 2017 Neural Comput. Appl. 28 953

    [19]

    Ahmad J, Khan M A, Ahmed F, Khan J S 2018 Neural Comput. Appl. 3 1

    [20]

    Sprott J C 1994 Phys. Rev. E 50 647Google Scholar

    [21]

    Enayatifar R, Abdullah A H, Isnin I F, Altameem A, Lee A 2017 Opt. Lasers Eng. 90 146Google Scholar

    [22]

    Liu H J, Wang X Y, Kadir A 2012 Appl. Soft Comput. 12 1457Google Scholar

  • [1] Zhou Shuang, Yin Yan-Li, Wang Shi-Yu, Zhang Ying-Qian. An n-dimensional discrete hyperchaotic system and its application in audio encryption. Acta Physica Sinica, 2024, 73(21): 210501. doi: 10.7498/aps.73.20241028
    [2] Liu Han-Yang, Hua Nan, Wang Yi-Nuo, Liang Jun-Qing, Ma Hong-Yang. Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos. Acta Physica Sinica, 2022, 71(17): 170303. doi: 10.7498/aps.71.20220466
    [3] Fang Jie, Jiang Ming-Hao, An Xiao-Yu, Sun Jun-Wei. "One image corresponding to one key" image encryption algorithm based on chaotic encryption and DNA encoding. Acta Physica Sinica, 2021, 70(7): 070501. doi: 10.7498/aps.70.20201642
    [4] Zhang Ze-Feng, Huang Li-Lian, Xiang Jian-Hong, Liu Shuai. Dynamic study of a new five-dimensional conservative hyperchaotic system with wide parameter range. Acta Physica Sinica, 2021, 70(23): 230501. doi: 10.7498/aps.70.20210592
    [5] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [6] Shi Hang, Wang Li-Dan. Multi-process image encryption scheme based on compressed sensing and multi-dimensional chaotic system. Acta Physica Sinica, 2019, 68(20): 200501. doi: 10.7498/aps.68.20190553
    [7] Lin Shu-Qing, Jiang Ning, Wang Chao, Hu Shao-Hua, Li Gui-Lan, Xue Chen-Peng, Liu Yu-Qian, Qiu Kun. A three-dimensional encryption orthogonal frequency division multiplexing passive optical network based on dynamic chaos-iteration. Acta Physica Sinica, 2018, 67(2): 028401. doi: 10.7498/aps.67.20171246
    [8] Yang Su-Li, Fu Shi-Hua, Cai Yu-Long, Zhang Di, Zhang Qing-Chuan. Experimental investigation on the influence of Mg content on Portevin-Le Chatelier effect in Al-based alloys by using digital image correlation. Acta Physica Sinica, 2017, 66(8): 086201. doi: 10.7498/aps.66.086201
    [9] Wen He-Ping, Yu Si-Min, Lü Jin-Hu. Encryption algorithm based on Hadoop and non-degenerate high-dimensional discrete hyperchaotic system. Acta Physica Sinica, 2017, 66(23): 230503. doi: 10.7498/aps.66.230503
    [10] Yao Li-Li, Yuan Cao-Jin, Qiang Jun-Jie, Feng Shao-Tong, Nie Shou-Ping. Asymmetric image encryption method based on gyrator transform and vector operation. Acta Physica Sinica, 2016, 65(21): 214203. doi: 10.7498/aps.65.214203
    [11] Peng Zai-Ping, Wang Chun-Hua, Lin Yuan, Luo Xiao-Wen. A novel four-dimensional multi-wing hyper-chaotic attractor and its application in image encryption. Acta Physica Sinica, 2014, 63(24): 240506. doi: 10.7498/aps.63.240506
    [12] Wan Xing-Yuan, Zhang Ji-Ming. A novel image authentication and recovery algorithm based on dither and chaos. Acta Physica Sinica, 2014, 63(21): 210701. doi: 10.7498/aps.63.210701
    [13] Wang Xing-Yuan, Zhang Ji-Ming. A novel image authentication and recovery algorithm based on chaos and Hamming code. Acta Physica Sinica, 2014, 63(2): 020701. doi: 10.7498/aps.63.020701
    [14] Xu Ning, Chen Xue-Lian, Yang Geng. Research on the algorithm of multiple-image encryption based on the improved virtual optical imaging. Acta Physica Sinica, 2013, 62(8): 084202. doi: 10.7498/aps.62.084202
    [15] Zhu Cong-Xu, Sun Ke-Hui. Cryptanalysis and improvement of a class of hyperchaos based image encryption algorithms. Acta Physica Sinica, 2012, 61(12): 120503. doi: 10.7498/aps.61.120503
    [16] Wang Jing, Jiang Guo-Ping. Cryptanalysis of a hyper-chaotic image encryption algorithm and its improved version. Acta Physica Sinica, 2011, 60(6): 060503. doi: 10.7498/aps.60.060503
    [17] Jin Jian-Xiu, Qiu Shui-Sheng. Cascaded image encryption systems based on physical chaos. Acta Physica Sinica, 2010, 59(2): 792-800. doi: 10.7498/aps.59.792
    [18] Wang Min, Hu Xiao-Fang, Wu Xiao-Ping. Digital image correlation method for the analysis of 3-D internal displacement field in object. Acta Physica Sinica, 2006, 55(10): 5135-5139. doi: 10.7498/aps.55.5135
    [19] Xie Kun, Lei Min, Feng Zheng-Jin. A study of a kind of hyper chaotic cryptosystem security. Acta Physica Sinica, 2005, 54(3): 1267-1272. doi: 10.7498/aps.54.1267
    [20] KUANG JING-YU, DENG KUN, HUANG RONG-HAI. AN ENCRYPTION APPROACH TO DIGITAL COMMUNICATION BY USING SPATIOTEMPORAL CHAOS SYNCHRONIZATION. Acta Physica Sinica, 2001, 50(10): 1856-1861. doi: 10.7498/aps.50.1856
Metrics
  • Abstract views:  9985
  • PDF Downloads:  230
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2019
  • Accepted Date:  21 November 2019
  • Published Online:  20 February 2020

/

返回文章
返回