Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-process image encryption scheme based on compressed sensing and multi-dimensional chaotic system

Shi Hang Wang Li-Dan

Citation:

Multi-process image encryption scheme based on compressed sensing and multi-dimensional chaotic system

Shi Hang, Wang Li-Dan
PDF
HTML
Get Citation
  • With the rapid development of computer science, the storage and dissemination of information are often carried out between various types of computer hardwares and various networks. The traditional information encryption scheme has gradually disappeared. Therefore, computer-based information encryption algorithms have gradually become a research hotspot in recent years. By combining the theory of wavelet packet transform, compressed sensing and chaotic system, a multi-process image encryption scheme based on compressed sensing and multi-dimensional chaotic system is proposed. The encryption scheme implements compression and encryption for grayscale images and corresponding decompression and decryption process. The wavelet packet transform theory is applied to the image preprocessing stage to perform wavelet packet decomposition on the original image. At the same time, the image signal components obtained by the decomposition are classified according to the threshold processing method, and the characteristics of the image signal components are processed in the subsequent processing. They are compressed, encrypted, or reserved in a differentiated manner. In the image compression stage, by introducing the compressed sensing algorithm to overcome the shortcomings of the traditional Nyquist sampling theorem, such as high sampling cost and low reconstruction quality, the compression efficiency and compression quality are improved while the ciphertext image reconstruction quality is guaranteed. In the image encryption stage, the encryption scheme combines multi-class and multi-dimensional chaotic systems to confuse and scramble the related image signal components, and introduces a high-dimensional chaotic system to make the encryption scheme have a large enough key space to further enhance the ciphertext image reliability. Finally, the complete reconstruction of the original image is achieved by applying the inverse of compression, encryption and wavelet packet transform. The simulation results show that the image encryption scheme effectively protects the basic information about ciphertext images by virtue of algorithm robustness against external interference, and does not reveal any useful information when dealing with cracking methods such as plaintext attacks. In addition, the information entropy and correlation coefficient of ciphertext images encrypted by this encryption scheme are closer to ideal values than those of the encryption algorithm in the references, and its encryption performance is significantly improved.
      Corresponding author: Wang Li-Dan, ldwang@swu.edu.cn
    • Funds: Project supported by the National Key Research & Development Program of China (Grant No. 2018YFB1306600), the National Natural Science Foundation of China (Grant Nos. 61571372, 61672436, 61601376), the Fundamental Science and Advanced Technology Research Foundation of Chongqing, China (Grant Nos. cstc2017jcyjBX0050, cstc2016jcyjA0547), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2016A001, XDJK2017A005)
    [1]

    吴成茂 2014 物理学报 63 090504Google Scholar

    Wu C M 2014 Acta Phys. Sin. 63 090504Google Scholar

    [2]

    林青, 王延江, 王珺 2016 中国科学: 技术科学 46 910

    Lin Q, Wang Y J, Wang J 2016 Sci. China: Technol. Sci. 46 910

    [3]

    李静, 向菲, 张军朋 2019 电子设计工程 27 84Google Scholar

    Li J, Xian F, Zhang J P 2019 Int. Electr. Elem. 27 84Google Scholar

    [4]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289Google Scholar

    [5]

    Chai X L, Zheng X Y, Gan Z H, Han D J, Chen Y R 2018 Signal Process 148 124Google Scholar

    [6]

    Zhu S Q, Zhu C X, Wang W H 2018 IEEE Access. 6 67095Google Scholar

    [7]

    Lü X P, Liao X F, Yang B 2018 Multimed Tools Appl. 77 28633Google Scholar

    [8]

    Hilton M L 1997 IEEE Trans. Bio-Med. Eng. 44 394Google Scholar

    [9]

    张祥, 张达永, 张刘辉, 潘栋 2016 气象水文海洋仪器 33 38Google Scholar

    Zhang X, Zhang D Y, Zhang L H, Pan D 2016 Meteorol. Hydrol. Mar. Instrum. 33 38Google Scholar

    [10]

    Goklani H S 2017 Int. J. Image, Graphics and Signal Processing 9 30

    [11]

    Huang R, Rhee K H, Uchida S 2012 Multimed Tools Appl. 7 2

    [12]

    Zhou N, Pan S, Cheng S, et al. 2016 Opt. Laser Technol. 82 121Google Scholar

    [13]

    禹思敏 2008 物理学报 57 3374Google Scholar

    Yu S M 2008 Acta Phys. Sin. 57 3374Google Scholar

    [14]

    禹思敏 2011 混沌系统与混沌电路 (西安:西安电子科技大学出版社) 第136−137页

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi’ an: Xi 'an University of Electronic Science and Technology Press) pp136−137 (in Chinese)

    [15]

    Chen G R 1999 Int. J. Bifurcat. Chaos 9 1465Google Scholar

    [16]

    王鸣天, 郭玉奇 2017 电子技术 46 69Google Scholar

    Wang M T, Guo Y Q 2017 Electr. Technol. 46 69Google Scholar

    [17]

    Li C Q 2013 Nonlinear Dyn. 73 2083Google Scholar

    [18]

    高展鸿, 徐文波 2011 基于MATLAB的图像处理案例教程 (北京: 清华大学出版社) 第99−101页

    Gao Z H, Xu W B 2011 MATLAB-Based Image Processing Case Tutorial (Beijing: Tsinghua University Press) pp99−101 (in Chinese)

    [19]

    张勇 2016 混沌数字图像加密 (北京: 清华大学出版社) 第50−59页

    Zhang Y 2016 Chaotic Digital Image Crptosystem (Beijing: Tsinghua University Press) pp50−59 (in Chinese)

    [20]

    王静, 蒋国平 2011 物理学报 60 060503Google Scholar

    Wang J, Jiang G P 2011 Acta Phys. Sin. 60 060503Google Scholar

    [21]

    Zhang Y, Xiao D 2013 Opt. Lasers Eng. 51 472Google Scholar

  • 图 1  Lena图像及其二阶小波包变换 (a)原图; (b)二阶小波包变换

    Figure 1.  Lena and its second-order wavelet packet transformation: (a) Original Lena; (b) second order wavelet packet transformation of Lena.

    图 2  分类算法流程图

    Figure 2.  Flow chart of classification algorithm.

    图 3  一次置乱加密流程图

    Figure 3.  One scrambling encryption algorithm flow chart.

    图 4  S信号的密文图像 (a) 一次置乱密文图像; (b) 二次置乱密文图像

    Figure 4.  Ciphertext image of the S signal: (a) Scrambling ciphertext image once; (b) secondary scrambling ciphertext image.

    图 5  S信号二次置乱加密流程图

    Figure 5.  Secondary scrambling encryption flow chart of S signal

    图 6  图像重构流程图

    Figure 6.  Image reconstruction flow chart.

    图 7  Lena图像的明文图像、重构图像 (a)原始图像; (b) Lena重构图像

    Figure 7.  Original, reconstructed image of Lena: (a) Original image; (b) reconstructed image.

    图 8  更多加密方案运行实例 (a) Pepper原始图像; (b) Pepper重构图像; (c) Cameraman原始图像; (d) Cameraman重构图像

    Figure 8.  More encryption scheme running examples: (a) Original image of Pepper; (b) reconstructed image of Pepper; (c) original image of Cameraman; (d) reconstructed image of Cameraman.

    图 9  Lena图像的明文(S信号)、密文图像在水平、竖直、斜线三个方向的相关分布图 (a)明文图像相关分布图; (b) S信号的密文图像相关分布图

    Figure 9.  Correlation distribution of plaintext, ciphertext image in horizontal, vertical and oblique directions of S signal of Lena: (a) Correlation distribution of plaintext of S signal; (b) correlation distribution of ciphertext of S signal.

    图 11  Cameraman图像的明文(S信号)、密文图像在水平、竖直、斜线三个方向的相关分布图 (a)明文图像相关分布图; (b) S信号的密文图像相关分布图

    Figure 11.  Correlation distribution of plaintext, ciphertext image in horizontal, vertical and oblique directions of S signal of Cameraman: (a) Correlation distribution of plaintext of S signal; (b) correlation distribution of ciphertext of S signal

    图 10  Pepper图像的明文(S信号)、密文图像在水平、竖直、斜线三个方向的相关分布图 (a)明文图像相关分布图; (b) S信号的密文图像相关分布图

    Figure 10.  Correlation distribution of plaintext, ciphertext image in horizontal, vertical and oblique directions of S signal of Pepper: (a) Correlation distribution of plaintext of S signal; (b) correlation distribution of ciphertext of S signal.

    图 12  Lena, Pepper, Cameraman图像的S信号的明文、密文的灰度直方图 (a) S信号的明文灰度直方图; (b) S信号的密文图像相关分布图

    Figure 12.  Gray histogram of plaintext and ciphertext of S signal of Lena, Pepper, Cameraman: (a) Gray histogram of plaintext of S signal; (b) gray histogram of plaintext of ciphertext of S signal

    图 13  不同图像的S信号嵌入噪声后的重构结果 (a) Lena原始图像、嵌入噪声的S信号密文、重构图像; (b) Pepper原始图像、嵌入噪声的S信号密文、重构图像; (c) Cameraman原始图像、嵌入噪声的S信号密文、重构图像

    Figure 13.  Reconstruction results of S signals of different images embedded with noise: (a) Reconstruction results of Lena with corresponding Cipher S signal embedded noise; (b) reconstruction results of Pepper with corresponding Cipher S signal embedded noise; (c) reconstruction results of Cameraman with corresponding Cipher S signal embedded noise

    图 14  不同图像的S信号像素剪切后的重构结果 (a) Lena原始图像、剪切12.5%像素点后的S信号密文、重构图像; (b) Pepper原始图像、剪切12.5%像素点后的S信号密文、重构图像; (c) Cameraman原始图像、剪切12.5%像素点后的S信号密文、重构图像

    Figure 14.  Reconstruction results of S signals of different images after pixel shearing: (a) Reconstruction results of Lena with corresponding Cipher S signal with 12.5% pixels lost; (b) reconstruction results of Pepper with corresponding Cipher S signal with 12.5% pixels lost; (c) reconstruction results of Cameraman with corresponding Cipher S signal with 12.5% pixels lost

    图 15  针对本文加密算法的选择明文攻击

    Figure 15.  The CPA against the encryption algorithm in this paper

    表 1  Lena图像Ci信号分量0像素点的个数及占比

    Table 1.  The number and proportion of 0 pixels in Ci signals in Lena.

    信号分量0像素点个数0像素点占比/%
    C13298.03
    C255413.53
    C370317.16
    C468216.65
    C543610.64
    C691722.39
    C784220.56
    C878919.26
    DownLoad: CSV

    表 2  比较不同加密方案的相关系数

    Table 2.  Comparisons for the correlation coefficients of different encryption scheme.

    图像明文图像密文图像
    水平竖直斜线水平竖直斜线
    Lena (本文)0.91890.73390.8097–0.0002 –0.0004 0.0001
    Lena[16]0.91800.73450.80830.00320.00250.0173
    Lena[17]0.91510.80970.74840.02740.00510.0117
    Pepper (本文)0.88490.75670.8323–0.0003 –0.0004 0.0003
    Pepper[16]0.88270.83740.74820.02100.00100.0071
    Pepper[17]0.88640.83980.74660.00700.01980.0228
    Cameraman (本文)0.92750.83640.88660.0004 0.0001 0.0002
    Cameraman [16]0.93390.88980.84590.00350.00140.0159
    Cameraman[17]0.92800.88350.84110.02770.01410.0281
    DownLoad: CSV

    表 3  比较不同加密方案的信息熵

    Table 3.  Comparisons for the entropy of different encryption scheme.

    加密方案明文图像密文图像
    Lena (本文)7.30357.9544
    Lena[16]7.9642
    Lena[17]7.9531
    Pepper (本文)7.43447.9633
    Pepper[16]7.9586
    Pepper[17]7.9543
    Cameraman (本文)6.95717.9554
    Cameraman[16]7.9636
    Cameraman[17]7.9538
    DownLoad: CSV

    表 4  修改1 bit像素点后不同图像(S信号)的NPCR, UACI, BACI

    Table 4.  NPCR, UACI, BACI of different images after changed 1 bit.

    图像NPCRUACIBACI
    Lena0.99540.33030.2682
    Pepper0.99440.33050.2657
    Cameraman0.99660.33940.2684
    DownLoad: CSV

    表 5  本文算法处理下不同图像的wPSNR和SSIM

    Table 5.  wPSNR and SSIM of different images after processed by scheme in this paper.

    图像wPSNRSSIM
    Lena48.900.9898
    Pepper50.330.9927
    Cameraman43.340.9736
    DownLoad: CSV

    表 6  本文算法处理不同图像时的时间复杂度

    Table 6.  Algorithm proposed deals with the time complexity of different images.

    图像WPT分解及分类压缩及重构加密及解密整体重构总耗时/s
    Lena0.600 s8.893 s1.098 s0.377 s10.968
    Pepper0.734 s7.815 s1.105 s0.362 s10.016
    Cameraman0.617 s3.908 s1.901 s0.353 s6.799
    DownLoad: CSV
  • [1]

    吴成茂 2014 物理学报 63 090504Google Scholar

    Wu C M 2014 Acta Phys. Sin. 63 090504Google Scholar

    [2]

    林青, 王延江, 王珺 2016 中国科学: 技术科学 46 910

    Lin Q, Wang Y J, Wang J 2016 Sci. China: Technol. Sci. 46 910

    [3]

    李静, 向菲, 张军朋 2019 电子设计工程 27 84Google Scholar

    Li J, Xian F, Zhang J P 2019 Int. Electr. Elem. 27 84Google Scholar

    [4]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289Google Scholar

    [5]

    Chai X L, Zheng X Y, Gan Z H, Han D J, Chen Y R 2018 Signal Process 148 124Google Scholar

    [6]

    Zhu S Q, Zhu C X, Wang W H 2018 IEEE Access. 6 67095Google Scholar

    [7]

    Lü X P, Liao X F, Yang B 2018 Multimed Tools Appl. 77 28633Google Scholar

    [8]

    Hilton M L 1997 IEEE Trans. Bio-Med. Eng. 44 394Google Scholar

    [9]

    张祥, 张达永, 张刘辉, 潘栋 2016 气象水文海洋仪器 33 38Google Scholar

    Zhang X, Zhang D Y, Zhang L H, Pan D 2016 Meteorol. Hydrol. Mar. Instrum. 33 38Google Scholar

    [10]

    Goklani H S 2017 Int. J. Image, Graphics and Signal Processing 9 30

    [11]

    Huang R, Rhee K H, Uchida S 2012 Multimed Tools Appl. 7 2

    [12]

    Zhou N, Pan S, Cheng S, et al. 2016 Opt. Laser Technol. 82 121Google Scholar

    [13]

    禹思敏 2008 物理学报 57 3374Google Scholar

    Yu S M 2008 Acta Phys. Sin. 57 3374Google Scholar

    [14]

    禹思敏 2011 混沌系统与混沌电路 (西安:西安电子科技大学出版社) 第136−137页

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi’ an: Xi 'an University of Electronic Science and Technology Press) pp136−137 (in Chinese)

    [15]

    Chen G R 1999 Int. J. Bifurcat. Chaos 9 1465Google Scholar

    [16]

    王鸣天, 郭玉奇 2017 电子技术 46 69Google Scholar

    Wang M T, Guo Y Q 2017 Electr. Technol. 46 69Google Scholar

    [17]

    Li C Q 2013 Nonlinear Dyn. 73 2083Google Scholar

    [18]

    高展鸿, 徐文波 2011 基于MATLAB的图像处理案例教程 (北京: 清华大学出版社) 第99−101页

    Gao Z H, Xu W B 2011 MATLAB-Based Image Processing Case Tutorial (Beijing: Tsinghua University Press) pp99−101 (in Chinese)

    [19]

    张勇 2016 混沌数字图像加密 (北京: 清华大学出版社) 第50−59页

    Zhang Y 2016 Chaotic Digital Image Crptosystem (Beijing: Tsinghua University Press) pp50−59 (in Chinese)

    [20]

    王静, 蒋国平 2011 物理学报 60 060503Google Scholar

    Wang J, Jiang G P 2011 Acta Phys. Sin. 60 060503Google Scholar

    [21]

    Zhang Y, Xiao D 2013 Opt. Lasers Eng. 51 472Google Scholar

  • [1] Wang Pan, Wang Zhong-Gen, Sun Yu-Fa, Nie Wen-Yan. Novel compressive sensing computing model used for analyzing electromagnetic scattering characteristics of three-dimensional electrically large objects. Acta Physica Sinica, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] Fan Hong-Jian, Li Jiang, Wang Li-Hua, Fan Chun-Hai, Liu Hua-Jie. Constructions of iron atoms arrays based on DNA origami templates for cryptography applications. Acta Physica Sinica, 2021, 70(6): 068702. doi: 10.7498/aps.70.20201438
    [3] Hu Yao-Hua, Liu Yan, Mu Ge, Qin Qi, Tan Zhong-Wei, Wang Mu-Guang, Yan Feng-Ping. Application of compressive sensing based on multimode fiber specklegram in optical image encryption. Acta Physica Sinica, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [4] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [5] Leng Xue-Dong, Wang Da-Ming, Ba Bin, Wang Jian-Hui. A quasi-cyclic compressed sensing delay estimation algorithm based on progressive edge-growth. Acta Physica Sinica, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [6] Li Shao-Dong, Chen Yong-Bin, Liu Run-Hua, Ma Xiao-Yan. Analysis on the compressive sensing based narrow-band radar super resolution imaging mechanism of rapidly spinning targets. Acta Physica Sinica, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [7] Li Hui, Zhao Lin, Li Liang. Cycle slip detection and repair based on Bayesian compressive sensing. Acta Physica Sinica, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [8] Shi Jie, Yang De-Sen, Shi Sheng-Guo, Hu Bo, Zhu Zhong-Rui. Compressive focused beamforming based on vector sensor array. Acta Physica Sinica, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [9] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [10] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] Kang Rong-Zong, Tian Peng-Wu, Yu Hong-Yi. An adaptive compressed sensing method based on selective measure. Acta Physica Sinica, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [12] Chen Ming-Sheng, Wang Shi-Wen, Ma Tao, Wu Xian-Liang. Fast analysis of electromagnetic scattering characteristics in spatial and frequency domains based on compressive sensing. Acta Physica Sinica, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [13] Zhang Xin-Peng, Hu Niao-Qing, Cheng Zhe, Zhong Hua. Vibration data recovery based on compressed sensing. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [14] Wang Zhe, Wang Bing-Zhong. Application of compressed sensing theory in the method of moments. Acta Physica Sinica, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [15] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] Feng Bing-Chen, Fang Sheng, Zhang Li-Guo, Li Hong, Tong Jie-Juan, Li Wen-Qian. A non-linear analysis for gamma-ray spectrum based on compressed sensing. Acta Physica Sinica, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [17] Bai Xu, Li Yong-Qiang, Zhao Sheng-Mei. Differential compressive correlated imaging. Acta Physica Sinica, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [18] Ma Yuan, Lü Qun-Bo, Liu Yang-Yang, Qian Lu-Lu, Pei Lin-Lin. Image sparsity evaluation based on principle component analysis. Acta Physica Sinica, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [19] Ning Fang-Li, He Bi-Jing, Wei Juan. An algorithm for image reconstruction based on lp norm. Acta Physica Sinica, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [20] Liu Qiang, Fang Jin-Qing, Zhao Geng, Li Yong. Research of Chaotic encryption system based on FPGA technology. Acta Physica Sinica, 2012, 61(13): 130508. doi: 10.7498/aps.61.130508
Metrics
  • Abstract views:  11577
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2019
  • Accepted Date:  15 July 2019
  • Available Online:  01 October 2019
  • Published Online:  20 October 2019

/

返回文章
返回