Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-noise microwave generation based on optical-microwave synchronization

Wang Kai Lin Bai-Ke Song You-Jian Meng Fei Lin Yi-Ge Cao Shi-Ying Hu Ming-Lie Fang Zhan-Jun

Citation:

Low-noise microwave generation based on optical-microwave synchronization

Wang Kai, Lin Bai-Ke, Song You-Jian, Meng Fei, Lin Yi-Ge, Cao Shi-Ying, Hu Ming-Lie, Fang Zhan-Jun
PDF
HTML
Get Citation
  • Low-noise microwave signals are of vital importance in fields such as cold atomic optical clocks, photon radars, and remote synchronization at large facilities. Here, we report a compact all-optical-fiber method to generate a low noise microwave signal, in which the fiber loop optical-microwave phase detector is used to coherently transfer the frequency stability of the ultra-stable laser to the microwave. Combining a narrow linewidth optical frequency comb and a fiber loop optical-microwave phase discriminator, a tight phase-lock between 7 GHz dielectric oscillator and optical frequency comb is achieved, the remaining phase noise of the synchronized optical pulse sequence and the microwave signal is –100 dBc/Hz@1 Hz, and the timing jitter is 8.6 fs (1 Hz—1.5 MHz); by building two sets of low-noise microwave generation systems, the measured residual phase noise of the 7 GHz microwave is –90 dBc/Hz@1 Hz, and the corresponding frequency stability is 4.8 × 10–15@1 s. These results provide a novel idea for generating the low-noise microwaves based on optical coherent frequency division.
      Corresponding author: Lin Bai-Ke, linbk@nim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grand No. 2017YFA0304404)
    [1]

    Capmany J, Novak D 2007 Nat. Photon. 1 319Google Scholar

    [2]

    Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guéna J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 141105Google Scholar

    [3]

    Kim J, Cox J A, Chen J, Kärtner F X 2008 Nat. Photon. 2 733Google Scholar

    [4]

    Doeleman S 2009 Frequency Standards and Metrology-Proceedings of the 7th Symposium (PacificGrove: World Scientific) p175

    [5]

    Francois B, Calosso C E, Danet J M, Boudot R 2014 Rev. Sci. Instrum. 85 094709Google Scholar

    [6]

    Grop S, Bourgeois P Y, Boudot R, Kersalé Y, Rubiola E, Giordano V 2010 Electron. Lett. 46 420Google Scholar

    [7]

    Maleki L 2011 Nat. Photon. 5 728Google Scholar

    [8]

    Giordano V, Grop S, Fluhr C, Dubois B, KersaléY, Rubiola E 2015 8th Symposium on Frequency Standards and Metrology (Potsdam: IOP Publishing Ltd), p012030

    [9]

    Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667Google Scholar

    [10]

    Xie X, Bouchand R, Nicolodi D, Giunta M, Hänsel W, Lezius M, Joshi A, Datta S, Alexandre C, L Michel, Tremblin P, Santarelli G, Holzwarth R, Le Coq Y 2017 Nat. Photon. 11 44Google Scholar

    [11]

    Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroûte C, Kersalé Y 2015 Appl. Opt. 54 3682Google Scholar

    [12]

    Ivanov E N, Diddams S A, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1059Google Scholar

    [13]

    Ivanov E N, Diddams S A, Hollberg L 2005 IEEE Trans. Sonics Ultrason. 52 1068Google Scholar

    [14]

    Wu K, Shum P P, Aditya S, Ouyang C, Wong J H, Lam H Q, Lee K E K 2011 J. Lightwave Technol. 29 3622Google Scholar

    [15]

    Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar

    [16]

    Jiang H, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004Google Scholar

    [17]

    Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X, Campbell J C, McGrew W F, Zhang X, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889Google Scholar

    [18]

    Dai Y, Cen Q, Wang L, Zhou Y, Yin F, Dai J, Li J, Xu K 2015 Opt. Express 23 31936Google Scholar

    [19]

    Wang L, Dai Y, Zhou Y, Yin F, Dai J, Li J, Xu K 2015 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (Santa Barbara: IEEE) p40

    [20]

    Chtioui M, Lelarge F, Enard A, Pommereau F, Carpentier D, Marceaux A, Dijk F, Achouche M 2011 IEEE Photonics Technol. Lett. 24 318

    [21]

    Li J, Xiong B, Sun C, Miao D, Luo Y 2015 Opt. Express 23 21615Google Scholar

    [22]

    Jung K, Kim J. 2012 Opt. Lett. 37 2958Google Scholar

    [23]

    Lessing M, Margolis H S, Brown C T A, Gill P, Marra G 2013 Opt. Express 21 27057Google Scholar

    [24]

    Jung K, Shin J, Kang J, Hunziker S, Min C K, Kim J 2014 Opt. Lett. 39 1577Google Scholar

    [25]

    Lu X, Zhang S, Jeon C G, Kang C S, Kim J, Shi K 2018 Opt. Lett. 43 1447Google Scholar

    [26]

    Lu X, Zhang S, Chen X, Kwon D, Jeon C G, Zhang Z, Kim J, Shi K 2017 Sci. Rep. 7 13305Google Scholar

    [27]

    Cao S, Lin B, Yuan X, Fang Z 2020 Opt. Commun. 478 126376

    [28]

    崔佳华, 林百科, 孟飞, 曹士英, 杨明哲, 林弋戈, 宋有建, 胡明列, 方占军 2020 红外与毫米波学报 39 25

    Cui J, Lin B, Meng F, Cao S, Yang M, Lin Y, Song J, Hu M, Fang Z 2020 Infrared Millim. W. 39 25 (in Chinese)

    [29]

    Zobel J W, Giunta M, Goers A J, Schmid L R, Reeves J, Holzwarth R, Adles E J 2019 IEEE Photonics Technol. Lett. 31 1323Google Scholar

  • 图 1  FLOM-PD原理图. 其中, Circulator为保偏光纤环形器, PM EOM为保偏光纤电光调制器, QWP为1/4波片, FR为法拉第旋光镜, HWP为1/2波片, 3 dB coupler为2 × 2的3 dB保偏光纤耦合器, BPD为平衡光电探测器

    Figure 1.  Schematic diagram of FLOM-PD. Circulator represents polarization-maintaining fiber circulator; PM EOM represents polarization-maintainingelectro-optic modulator; QWP represents quarter-wave plates; FR represents faraday rotators; HWP represents half-wave plate; 3 dB coupler represents 2 × 2 3 dB polarization-maintaining fiber coupler; BPD represents balanced photodetector.

    图 2  窄线宽光学频率梳原理图 (a)超稳激光系统; (b)飞秒光学频率梳. 其中, CW laser为连续激光, PID为比例-积分-微分控制器, PD为光电探测器, AOM为声光调制器, PZT为压电位移器

    Figure 2.  Schematic diagram ofnarrowlinewidth optical frequency comb: (a) Ultra-stable laser system; (b) optical frequency comb. CW laser represents continuous-wave laser, PID represents proportional-integral-differentialcontroller, PD represents photodetector, AOM represents acousto-optical modulator, PZT represents piezoelectric transducer.

    图 3  基于FLOM-PD和光学频率梳的光学-微波同步方案 (a) 光学-微波同步装置; (b)环外相位噪声测量装置. 其中, EDFA为掺铒光纤放大器, PBS为偏振光束分束器, Coupler为保偏光纤耦合器, Circulator为保偏光纤环形器, VOA为可调光学衰减器, BPD为平衡光电探测器, PIC为比例积分控制器, DRO为介质振荡器, Power divider为微波功率分配器, FFT为快速傅里叶变换分析仪

    Figure 3.  Optical-microwave synchronization scheme based on FLOM-PD and optical frequency comb. (a) Optical-microwave synchronization setup; (b) out-of-loop phase noise measurement setup. EDFA represents erbium-doped fiber amplifiers, PBS represents polarization beam splitter, Coupler represents polarization-maintaining fiber coupler, Circulator represents polarization-maintainingfiber circulator, VOA represents variable optical attenuators, BPD represents balanced photodetector, PIC represents proportional-integral controller, DRO represents dielectric resonator oscillator, Power divider represents microwave power divider, FFT represents fast Fourier transform analyzer.

    图 4  微波性能表征方案. 其中, CW Laser为连续激光, DRO为介质振荡器, PIC为比例积分控制器, LPF为低通滤波器, LNA为低噪声放大器.

    Figure 4.  Microwave performance characterization setup. CW laser represents continuous-wave laser, DRO represents dielectric resonator oscillator, PIC represents proportional-integral controller, LPF represents lowpass filter, LNA represents low noise amplifier.

    图 5  FLOM-PD及锁相系统的噪声测量方案.其中, CW Laser为连续激光, DRO为介质振荡器, PIC为比例积分控制器, LPF为低通滤波器, Phase shifter为微波相移器

    Figure 5.  Phase noise characterization setup of FLOM-PDandphase-lock system. CW laser represents continuous-wave laser, DRO represents dielectric resonator oscillator, PIC represents proportional-integral controller, LPF represents lowpass filter, Phase shifter represents microwave phase shifter.

    图 6  相位噪声和定时抖动测量结果 (a)相位噪声; (b)定时抖动

    Figure 6.  Phase noise and timing jitter measurement results: (a) Phase noise; (b) RMS time jitter.

    图 7  信号频率为7 GHz的抖动与频率稳定度 (a)频率抖动; (b)频率稳定度

    Figure 7.  Frequency jitter and Allan deviation of 7 GHz microwave: (a) Frequency jitter; (b) frequency stability.

    图 8  7 GHz载波的单边带相位噪声

    Figure 8.  SSB Phase noise of 7 GHz carrier.

  • [1]

    Capmany J, Novak D 2007 Nat. Photon. 1 319Google Scholar

    [2]

    Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guéna J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 141105Google Scholar

    [3]

    Kim J, Cox J A, Chen J, Kärtner F X 2008 Nat. Photon. 2 733Google Scholar

    [4]

    Doeleman S 2009 Frequency Standards and Metrology-Proceedings of the 7th Symposium (PacificGrove: World Scientific) p175

    [5]

    Francois B, Calosso C E, Danet J M, Boudot R 2014 Rev. Sci. Instrum. 85 094709Google Scholar

    [6]

    Grop S, Bourgeois P Y, Boudot R, Kersalé Y, Rubiola E, Giordano V 2010 Electron. Lett. 46 420Google Scholar

    [7]

    Maleki L 2011 Nat. Photon. 5 728Google Scholar

    [8]

    Giordano V, Grop S, Fluhr C, Dubois B, KersaléY, Rubiola E 2015 8th Symposium on Frequency Standards and Metrology (Potsdam: IOP Publishing Ltd), p012030

    [9]

    Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667Google Scholar

    [10]

    Xie X, Bouchand R, Nicolodi D, Giunta M, Hänsel W, Lezius M, Joshi A, Datta S, Alexandre C, L Michel, Tremblin P, Santarelli G, Holzwarth R, Le Coq Y 2017 Nat. Photon. 11 44Google Scholar

    [11]

    Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroûte C, Kersalé Y 2015 Appl. Opt. 54 3682Google Scholar

    [12]

    Ivanov E N, Diddams S A, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1059Google Scholar

    [13]

    Ivanov E N, Diddams S A, Hollberg L 2005 IEEE Trans. Sonics Ultrason. 52 1068Google Scholar

    [14]

    Wu K, Shum P P, Aditya S, Ouyang C, Wong J H, Lam H Q, Lee K E K 2011 J. Lightwave Technol. 29 3622Google Scholar

    [15]

    Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar

    [16]

    Jiang H, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004Google Scholar

    [17]

    Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X, Campbell J C, McGrew W F, Zhang X, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889Google Scholar

    [18]

    Dai Y, Cen Q, Wang L, Zhou Y, Yin F, Dai J, Li J, Xu K 2015 Opt. Express 23 31936Google Scholar

    [19]

    Wang L, Dai Y, Zhou Y, Yin F, Dai J, Li J, Xu K 2015 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (Santa Barbara: IEEE) p40

    [20]

    Chtioui M, Lelarge F, Enard A, Pommereau F, Carpentier D, Marceaux A, Dijk F, Achouche M 2011 IEEE Photonics Technol. Lett. 24 318

    [21]

    Li J, Xiong B, Sun C, Miao D, Luo Y 2015 Opt. Express 23 21615Google Scholar

    [22]

    Jung K, Kim J. 2012 Opt. Lett. 37 2958Google Scholar

    [23]

    Lessing M, Margolis H S, Brown C T A, Gill P, Marra G 2013 Opt. Express 21 27057Google Scholar

    [24]

    Jung K, Shin J, Kang J, Hunziker S, Min C K, Kim J 2014 Opt. Lett. 39 1577Google Scholar

    [25]

    Lu X, Zhang S, Jeon C G, Kang C S, Kim J, Shi K 2018 Opt. Lett. 43 1447Google Scholar

    [26]

    Lu X, Zhang S, Chen X, Kwon D, Jeon C G, Zhang Z, Kim J, Shi K 2017 Sci. Rep. 7 13305Google Scholar

    [27]

    Cao S, Lin B, Yuan X, Fang Z 2020 Opt. Commun. 478 126376

    [28]

    崔佳华, 林百科, 孟飞, 曹士英, 杨明哲, 林弋戈, 宋有建, 胡明列, 方占军 2020 红外与毫米波学报 39 25

    Cui J, Lin B, Meng F, Cao S, Yang M, Lin Y, Song J, Hu M, Fang Z 2020 Infrared Millim. W. 39 25 (in Chinese)

    [29]

    Zobel J W, Giunta M, Goers A J, Schmid L R, Reeves J, Holzwarth R, Adles E J 2019 IEEE Photonics Technol. Lett. 31 1323Google Scholar

  • [1] Ma Bo-Wen, Dai Wen, Meng Fei, Tao Jia-Ning, Wu Zi-Ling, Shi Yan-Qing, Fang Zhan-Jun, Hu Ming-Lie, Song You-Jian. Using asynchronous optical sampling to measure timing jitter of electro-optic frequency combs. Acta Physica Sinica, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] Chen Fa-Xi, Zhao Kan, Li Li-Bo, Guo Bao-Long. High precision time transfer based on laser wavelength tracking. Acta Physica Sinica, 2022, 71(23): 230702. doi: 10.7498/aps.71.20221460
    [3] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [4] Low-noise microwave generation based on optical-microwave synchronization. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211253
    [5] Chen Fa-Xi, Zhao Kan, Li Bo, Liu Bo, Guo Xin-Xing, Kong Wei-Cheng, Chen Guo-Chao, Guo Bao-Long, Liu Tao, Zhang Shou-Gang. High-precision dual-wavelength time transfer via1085-km telecommunication fiber link. Acta Physica Sinica, 2021, 70(7): 070702. doi: 10.7498/aps.70.20201277
    [6] Jiang Hai-Feng. Progresses of ultrastable optical-cavity-based microwave source. Acta Physica Sinica, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [7] Chen Fa-Xi, Zhao Kan, Zhou Xu, Liu Tao, Zhang Shou-Gang. High-precision long-haul fiber-optic time transfer between multi stations. Acta Physica Sinica, 2017, 66(20): 200701. doi: 10.7498/aps.66.200701
    [8] Ren Li-Qing, Zhu Song, Xu Guan-Jun, Wang Zhao-Hua, Deng Zhong-Xun, Wei Ying-Chun, Jin Hong-Ying, Li Zeng-Sheng, Gao Jing, Liu Jie, Zhang Lin-Bo, Dong Rui-Fang, Liu Tao, Li Yong-Fang, Zhang Shou-Gang. Study of a spherical vibration-insensitive optical reference cavity. Acta Physica Sinica, 2014, 63(9): 090601. doi: 10.7498/aps.63.090601
    [9] Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun, Li Tian-Chu. Precise frequency control of an Er-doped fiber comb. Acta Physica Sinica, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [10] Meng Fei, Cao Shi-Ying, Cai Yue, Wang Gui-Zhong, Cao Jian-Ping, Li Tian-Chu, Fang Zhan-Jun. Study of the femtosecond fiber comb and absolute optical frequency measurement. Acta Physica Sinica, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [11] Guo Wen-Gang, Hu Hao-Feng, Wang Pan, Wang Xiao-Lei, Zhai Hong-Chen. Time-resolved optical diagnosis of intense femtosecond laser ablation of silica glass. Acta Physica Sinica, 2011, 60(1): 017901. doi: 10.7498/aps.60.017901
    [12] Cao Shi-Ying, Fang Zhan-Jun, Meng Fei, Wang Qiang, Li Tian-Chu. Ti:sapphire femtosecond comb with two spectral broadening parts. Acta Physica Sinica, 2011, 60(8): 080601. doi: 10.7498/aps.60.080601
    [13] Wang Bing, Yan Shao-Ping, Wu Xiu-Qing. Effects of cross correlated noises on the mean first-passage time of optical bistable system. Acta Physica Sinica, 2009, 58(8): 5191-5195. doi: 10.7498/aps.58.5191
    [14] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [15] Fang Zhan-Jun, Wang Qiang, Wang Min-Ming, Meng Fei, Lin Bai-Ke, Li Tian-Chu. Femtosecond frequency comb and optical frequency measurement of 532 nm Nd:YAG laser. Acta Physica Sinica, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
    [16] Han Hai_Nian, Zhao Yan_Ying, Zhang Wei, Zhu Jiang_Feng, Wang Peng, Wei Zhi_Yi, Li Shi_Qun. Measurement of carrier-envelope phase of few cycles Ti:sapphire laser by difference frequency technique. Acta Physica Sinica, 2007, 56(5): 2756-2759. doi: 10.7498/aps.56.2756
    [17] Zhai Hui, Xu Shi-Xiang, Xu Zhi-Xiong, Cai Hua, Yang Xuan, Wu Kun, Zeng He-Ping. Generation of background-free pulses at 1064nm accurately synchronized with femtosecond laser pulses at 794nm. Acta Physica Sinica, 2007, 56(5): 2821-2827. doi: 10.7498/aps.56.2821
    [18] Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Measurement of femtosecond laser pulses using PG frequency-resolved optical gating. Acta Physica Sinica, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [19] Wang Zhao-Hua, Wei Zhi-Yi, Teng Hao, Wang Peng, Zhang Jie. Measurement of femtosecond laser pulses using SHG frequency-resolved optical gating technique. Acta Physica Sinica, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
    [20] HUANG XIAN-GAO, XU JIAN-XUE, HUANG WEI, ZHU FU-CHEN. ERROR ANALYSIS FOR DELAY SYNCHRONIZATION OF CHAOTIC SYSTEM. Acta Physica Sinica, 2001, 50(12): 2296-2302. doi: 10.7498/aps.50.2296
Metrics
  • Abstract views:  5569
  • PDF Downloads:  175
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2021
  • Accepted Date:  23 October 2021
  • Available Online:  10 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回