搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长距离多站点高精度光纤时间同步

陈法喜 赵侃 周旭 刘涛 张首刚

引用本文:
Citation:

长距离多站点高精度光纤时间同步

陈法喜, 赵侃, 周旭, 刘涛, 张首刚

High-precision long-haul fiber-optic time transfer between multi stations

Chen Fa-Xi, Zhao Kan, Zhou Xu, Liu Tao, Zhang Shou-Gang
PDF
导出引用
  • 为了保证长距离多站点间的高精度时间同步,在利用双向时间比对法实现高精度长距离时间同步的基础上,提出了一种利用一个波长信道同时对1 PPS (pluse per second)信号、时码信号以及10 MHz信号进行传递,并使用时分多址和净化再生的方式实现多站点高精度光纤时间同步的方法.以自行研制的工程样机在长度约550 km的实验室光纤链路以及871.6 km的实地光纤链路上进行了实验验证.在实验室光纤链路上,同时在50,300,550 km处测量得到的时间同步标准差分别为16.7,16.8,18.4 ps,时间稳定度分别为1.78 ps@1000 s,2.09 ps@1000 s,2.92 ps@1000 s.在实地光纤链路上,实现了光纤链路沿途11个站点的时间同步,测得871.6 km传递链路的时间同步标准差为29.8 ps,时间稳定度为3.85 ps@1000 s,不确定度为25.4 ps.
    To achieve high-precision fiber-optic time transfer, the method of two-way transmission is usually used. Therefore in this paper we propose to develop a high-precision long-haul fiber-optic time transfer between multi stations by simultaneously transferring the 1 pluse per second signal, time code signal and 10 MHz frequency signal over single fiber with the same wavelength, and adopting the time division multi address (TDMA) as well as the purification and regeneration method at individual station. In this proposal, the equipment at each remote station has its own address, and the equipment at the local station can establish the periodic two-way time transfer with any remote station by using the TDMA method, therefore each remote station is synchronized with the local station. To avoid the superimposed effect of optical noises during propagation in fiber, the optical-electro-optical relay amplifiers are utilized. In the meantime the propagation delay of the fiber link is compensated for at each remote station. With the self-developed engineering prototypes, the experimental verifications are subsequently conducted both in laboratory and real field. In the laboratory, the experimental setup is built by cascading 11 rolls of 50 km-long fiber coils, and locating three monitoring devices at different fiber distances of 50, 300, and 550 km from the local station. The stabilities of the time transfer at these three points are achieved to be 16.7, 16.8, and 18.4 ps in standard deviation, and the time deviations are 1.78, 2.09, and 2.92 ps at an averaging time of 1000 s respectively. In the real field test, a field fiber link of 871.6 km in length is utilized, along which 11 self-developed time-frequency transceivers are set at the cascaded fiber-optic stations. Since only the 11th remote station is co-located at the local station, the performance and the time transfer between the 11th remote station and the local station are measured accurately. The time transfer is experimentally demonstrated with the time standard deviation of 29.8 ps and the time deviations of 3.85 ps/1000 s. The timing uncertainty on the field fiber link is also checked and gives a value of 25.4 ps. To further improve the long-term stability of time transfer, the more accurate thermal control of the lasers used in the system should be adopted to reduce the optical wavelength drift. By compressing the bandwidth of the phase locked loop module in each remote device, the short-term stability of time synchronization can also be better. This proposal can also be extended to the fiber networks with star-shaped and chain-shaped connections. Therefore time synchronization in even larger areas and more stations can be realized.
      通信作者: 陈法喜, cfx2006xd@163.com
    • 基金项目: 国家自然科学基金重大项目(批准号:91636101)、国家重点研发计划(批准号:2016YFF0200200)和国家自然科学基金(批准号:11273024)资助的课题.
      Corresponding author: Chen Fa-Xi, cfx2006xd@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91636101, 11273024) and the National Key Research and Development Plan of China (Grant No. 2016YFF0200200).
    [1]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [2]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hansch T W 2011 Phys. Rev. Lett. 107 203001

    [3]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-KleinA 2008 Phys. Rev. Lett. 100 150801

    [4]

    Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667

    [5]

    Marion H, Pereira D S F, Abgrall M, Zhang S, Sortais Y, Bize S, Maksimovic I, Calonico D, Grunert J, Mandache C, Lemonde P, Santarelli G, Laurent P, Clairon A 2003 Phys. Rev. Lett. 90 150801

    [6]

    DeCamp M F, Reis D A, Bucksbaum P H, Adams B, Caraher J M, Clarke R, Conover C W S, Dufresne E M, Merlin R, Stoica V, Wahlstrand J K 2001 Nature 413 825

    [7]

    Ruan J 2012 Ph. D. Dissertation (BeiJing:University of Chinese Academy of Sciences) (in Chinese)[阮军2012中国科学院大学博士论文(北京:中国科学院大学)]

    [8]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photon. 5 158

    [9]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang W, Bromley S L, Ye J 2014 Nat. Lett. 506 71

    [10]

    Jiang Z 2009 Proceedings of 2009 Frequency Control Symposium the 22nd European Frequency and Time forum Besancon, France, April 20-24, 2009 p1194

    [11]

    Chu F D, Tseng W H, Hsu W C, Ting P Y 2014 Proceedings of IEEE International Frequency Control Symposium Taipei, Taiwan, May 19-22, 2014 p11

    [12]

    Lewandowski W, Thomas C 1991 Proc. IEEE 79 991

    [13]

    Lewandowski W, Azoubib J, Klepczynski W J 1999 Proc. IEEE 87 163

    [14]

    Kong Y, Yang X H, Qin W J, Cao F, Li Z G, Sun B Q, Chang H 2014 Proceedings of IEEE International Frequency Control Symposium Taipei, Taiwan, May 19-22, 2014 p1

    [15]

    Siwczynski Ł, Krehlik P, Czubla A, Lipinski M 2013 Metrologia 50 133

    [16]

    Smotlacha V, Kuna A, Mache W 2010 EFTF-201024th European Frequency and Time Forum Noordwijk, Netherlands, April 13-16, 2010 p1

    [17]

    Ebenhag S C 2008 Proceedings of the 22nd European Frequency and Time Forum Toulouse, France, April 22-25, 2008 p23

    [18]

    Piester D, Fujieda M, Rost M, Bauch A 2009 41st Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting Santa Ana Pueblo, America, November 16-19, 2009 p16

    [19]

    Smotalacha V, Kuna A, Mache W 2010 Proceedings of the 42nd Annual Precise Time and Time Interval Meeting Reston, America, November 16-19, 2010 p427

    [20]

    Schnatz H 2012 Conference on Precision Electromagnetic Measurement Washington DC, America, July 1-6, 2012 p185

    [21]

    Akiyama T, Matsuzawa H, Haraguchi E, Ando T, Hirano Y 2012 Microwave Symposium Digest. IEEE/MTT-S International Montreal, Canada, June 17-22, 2012 p1

    [22]

    Wu G L, Chen J P 2016 Sci. Technol. Herald 34 99 (in Chinese)[吴龟灵, 陈建平2016科技导报34 99]

    [23]

    Li D L, Cheng Q M, Zhang B F, Lu L, Lei P J, Li X Y 2014 Laser and Photo-electronic Progress 51 010602 (in Chinese)[李得龙, 程清明, 张宝富, 卢麟, 雷平纪, 李晓亚2014激光与光电子进展51 010602]

    [24]

    Wu L, Wu G L, Shen J G, Zou W W, Chen J P 2012 Optical Fiber Electric Cable 3 15 (in Chinese)[吴雷, 吴龟灵, 沈建国, 邹文卫, 陈建平2012光纤与电缆及其应用技术3 15]

    [25]

    Gao C, Wang B, Zhu X, Chen W L, Bai Y, Miao J, Zhu X, Li T C, Wang L J 2012 Opt. Lett. 37 4690

    [26]

    Chen W, Liu Q, Cheng N, Xu D, Yang F, Gui Y Z, Cai H W 2015 IEEE Photon. J. 7 7901609

    [27]

    Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602 (in Chinese)[刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚2015物理学报64 120602]

    [28]

    Jiao D D, Gao J, Liu J, Deng X, Xu G J, Chen J P, Dong R F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 190601 (in Chinese)[焦东东, 高静, 刘杰, 邓雪, 许冠军, 陈玖朋, 董瑞芳, 刘涛, 张首刚2015物理学报64 190601]

    [29]

    Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601

  • [1]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [2]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hansch T W 2011 Phys. Rev. Lett. 107 203001

    [3]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-KleinA 2008 Phys. Rev. Lett. 100 150801

    [4]

    Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667

    [5]

    Marion H, Pereira D S F, Abgrall M, Zhang S, Sortais Y, Bize S, Maksimovic I, Calonico D, Grunert J, Mandache C, Lemonde P, Santarelli G, Laurent P, Clairon A 2003 Phys. Rev. Lett. 90 150801

    [6]

    DeCamp M F, Reis D A, Bucksbaum P H, Adams B, Caraher J M, Clarke R, Conover C W S, Dufresne E M, Merlin R, Stoica V, Wahlstrand J K 2001 Nature 413 825

    [7]

    Ruan J 2012 Ph. D. Dissertation (BeiJing:University of Chinese Academy of Sciences) (in Chinese)[阮军2012中国科学院大学博士论文(北京:中国科学院大学)]

    [8]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photon. 5 158

    [9]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang W, Bromley S L, Ye J 2014 Nat. Lett. 506 71

    [10]

    Jiang Z 2009 Proceedings of 2009 Frequency Control Symposium the 22nd European Frequency and Time forum Besancon, France, April 20-24, 2009 p1194

    [11]

    Chu F D, Tseng W H, Hsu W C, Ting P Y 2014 Proceedings of IEEE International Frequency Control Symposium Taipei, Taiwan, May 19-22, 2014 p11

    [12]

    Lewandowski W, Thomas C 1991 Proc. IEEE 79 991

    [13]

    Lewandowski W, Azoubib J, Klepczynski W J 1999 Proc. IEEE 87 163

    [14]

    Kong Y, Yang X H, Qin W J, Cao F, Li Z G, Sun B Q, Chang H 2014 Proceedings of IEEE International Frequency Control Symposium Taipei, Taiwan, May 19-22, 2014 p1

    [15]

    Siwczynski Ł, Krehlik P, Czubla A, Lipinski M 2013 Metrologia 50 133

    [16]

    Smotlacha V, Kuna A, Mache W 2010 EFTF-201024th European Frequency and Time Forum Noordwijk, Netherlands, April 13-16, 2010 p1

    [17]

    Ebenhag S C 2008 Proceedings of the 22nd European Frequency and Time Forum Toulouse, France, April 22-25, 2008 p23

    [18]

    Piester D, Fujieda M, Rost M, Bauch A 2009 41st Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting Santa Ana Pueblo, America, November 16-19, 2009 p16

    [19]

    Smotalacha V, Kuna A, Mache W 2010 Proceedings of the 42nd Annual Precise Time and Time Interval Meeting Reston, America, November 16-19, 2010 p427

    [20]

    Schnatz H 2012 Conference on Precision Electromagnetic Measurement Washington DC, America, July 1-6, 2012 p185

    [21]

    Akiyama T, Matsuzawa H, Haraguchi E, Ando T, Hirano Y 2012 Microwave Symposium Digest. IEEE/MTT-S International Montreal, Canada, June 17-22, 2012 p1

    [22]

    Wu G L, Chen J P 2016 Sci. Technol. Herald 34 99 (in Chinese)[吴龟灵, 陈建平2016科技导报34 99]

    [23]

    Li D L, Cheng Q M, Zhang B F, Lu L, Lei P J, Li X Y 2014 Laser and Photo-electronic Progress 51 010602 (in Chinese)[李得龙, 程清明, 张宝富, 卢麟, 雷平纪, 李晓亚2014激光与光电子进展51 010602]

    [24]

    Wu L, Wu G L, Shen J G, Zou W W, Chen J P 2012 Optical Fiber Electric Cable 3 15 (in Chinese)[吴雷, 吴龟灵, 沈建国, 邹文卫, 陈建平2012光纤与电缆及其应用技术3 15]

    [25]

    Gao C, Wang B, Zhu X, Chen W L, Bai Y, Miao J, Zhu X, Li T C, Wang L J 2012 Opt. Lett. 37 4690

    [26]

    Chen W, Liu Q, Cheng N, Xu D, Yang F, Gui Y Z, Cai H W 2015 IEEE Photon. J. 7 7901609

    [27]

    Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602 (in Chinese)[刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚2015物理学报64 120602]

    [28]

    Jiao D D, Gao J, Liu J, Deng X, Xu G J, Chen J P, Dong R F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 190601 (in Chinese)[焦东东, 高静, 刘杰, 邓雪, 许冠军, 陈玖朋, 董瑞芳, 刘涛, 张首刚2015物理学报64 190601]

    [29]

    Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601

  • [1] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212194
    [2] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 71(13): 134207. doi: 10.7498/aps.70.20212194
    [3] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, 2022, 71(4): 044204. doi: 10.7498/aps.71.20211253
    [4] 陈法喜, 赵侃, 李立波, 郭宝龙. 基于激光波长跟踪的高精度光纤时间传递. 物理学报, 2022, 71(23): 230702. doi: 10.7498/aps.71.20221460
    [5] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [6] 陈法喜, 赵侃, 李博, 刘博, 郭新兴, 孔维成, 陈国超, 郭宝龙, 刘涛, 张首刚. 基于1085 km实地光纤链路的双波长光纤时间同步研究. 物理学报, 2021, 70(7): 070702. doi: 10.7498/aps.70.20201277
    [7] 黄军超, 汪凌珂, 段怡菲, 黄亚峰, 刘亮, 李唐. 光纤1/f 热噪声的实验研究. 物理学报, 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [8] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [9] 丁伟, 汪滢莹, 高寿飞, 洪奕峰, 王璞. 高性能反谐振空芯光纤导光机理与实验制作研究进展. 物理学报, 2018, 67(12): 124201. doi: 10.7498/aps.67.20180724
    [10] 饶云江. 长距离分布式光纤传感技术研究进展. 物理学报, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [11] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [12] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [13] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 物理学报, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [14] 王静, 张晨芳, 康泽新, 孙将, 郑斯文, 林桢, 王春灿, 简水生. 多偏振控制高双折射光纤环形镜输出特性的理论和实验研究. 物理学报, 2011, 60(12): 124215. doi: 10.7498/aps.60.124215
    [15] 乔学光, 丁锋, 贾振安, 傅海威, 营旭东, 周锐, 宋娟. 高精度准分布式光纤光栅地震检波解调系统的研究. 物理学报, 2011, 60(7): 074221. doi: 10.7498/aps.60.074221
    [16] 翟 惠, 徐世祥, 许智雄, 蔡 华, 杨 旋, 吴 昆, 曾和平. 与794nm飞秒激光精确同步的无直流背底的1064nm脉冲光的产生. 物理学报, 2007, 56(5): 2821-2827. doi: 10.7498/aps.56.2821
    [17] 余恬, 王福勋. 光斑的形状因子及其在光纤定解问题中的应用. 物理学报, 2002, 51(9): 1907-1912. doi: 10.7498/aps.51.1907
    [18] 余寿绵, 余恬. 索末菲球面波公式的协变形式及其在光纤理论中的应用. 物理学报, 2001, 50(6): 1097-1102. doi: 10.7498/aps.50.1097
    [19] 余寿绵, 余恬. 光纤中的电磁对偶变换与导波的模式分析. 物理学报, 2001, 50(11): 2179-2184. doi: 10.7498/aps.50.2179
    [20] 黄显高, 徐健学, 黄伟, 朱甫臣. 混沌系统的时间延迟同步误差分析. 物理学报, 2001, 50(12): 2296-2302. doi: 10.7498/aps.50.2296
计量
  • 文章访问数:  6795
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-07
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-10-05

/

返回文章
返回