-
Local cleavage of indium antimonide (InSb) chip always occurs in the manufacture of the InSb infrared focal plane detectors (IRFPAs), and this specific fracture phenomenon restricts the improvement of the yield of the InSb IRFPAs. After analysis, we think that the cleavage of InSb chip in the edge region of the InSb IRFPAs is related to the splashed gold bump existing in this region, and this failure phenomenon dominates in the low-cyclic liquid nitrogen shocking tests. In order to clarify the influence of the splashed gold bump on the cleavage of the InSb chip, we establish a structural model of the InSb IRFPAs containing the splashed gold bump, and analyze the influence of the splashed gold bump on the thermal stress distribution in the InSb chip. Besides, we preset the initial cracks with different lengths at the stress concentration sites to describe the dislocations in InSb wafers. Using the energy release rate as criterion, we obtain the relationship between the cleavage of the InSb chip and the dislocation line length in the presence of splashed gold bump. The main conclusions are drawn as follows. 1) The influence of the splashed gold bump on the cleavage of the InSb chip is localized, and two stress concentration sites are formed in the outermost part of the contact region between the splashed gold bump and the InSb chip. 2) The energy release rate surrounding the preset crack increases promptly with the preset crack length increasing. 3) Cleavage of the InSb chip caused by the splashed gold bump belongs to the type I fracture failure mode. In the cyclic liquid nitrogen shocking tests, the dislocation line gradually punches through the InSb chip under the driving of the concentrating stress, and forms the macro cleavage of the InSb chip.
-
Keywords:
- InSb infrared focal plane detectors /
- splashed gold bump /
- thermal stress distribution /
- energy release rate
[1] 吕衍秋, 鲁星, 鲁正雄, 李墨 2020 航空兵器 27 1Google Scholar
Lv Y Q, Lu X, Lu Z X, Li M 2020 Aero Weaponry 27 1Google Scholar
[2] Rogalski A 2011 Infrared Phys. Technol. 54 136Google Scholar
[3] 胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar
[4] Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174Google Scholar
[5] 罗宏 2010 激光与红外 40 720Google Scholar
Luo H 2010 Laser & Infrared 40 720Google Scholar
[6] Meng Q D, Zhang X L, Lv Y Q, Si J J 2019 Opt. Quantum Electron. 51 1Google Scholar
[7] Meng Q D, Zhang X L, Lv Y Q, Si J J 2017 Opt. Quantum Electron. 49 211Google Scholar
[8] Hao L C, Huang A B, Lai C X, Chen X, Hao M M, Chen H L, Lu G G, Huang Y, En Y F 2015 Aopc: Optical & Optoelectronic Sensing & Imaging Technology Beijing, China, May 5−7, 2015 96740H-1
[9] 秦朗 2014 硕士学位论文 (辽宁: 大连理工大学)
Qin L 2014 M. S. Thesis (Liaoning: Dalian University of Technology) (in Chinese)
[10] 巩锋, 程鹏, 吴卿, 折伟林, 陈元瑞 2013 激光与红外 43 1146Google Scholar
Gong F, Cheng P, Wu Q, She W L, Chen Y R 2013 Laser & Infrared 43 1146Google Scholar
[11] 柏伟, 庞新义, 赵超 2018 红外 39 8Google Scholar
Bai W, Pang X Y, Zhao C 2018 Infrared 39 8Google Scholar
[12] Rybicki E F, Kanninen M F 1977 Eng. Fract. Mech. 9 931Google Scholar
[13] Irwin G R 1956 Sagamore Res. Conf. Proc. 2 289
[14] Zhang X L, Meng Q D, Lv Y Q, Si J J 2017 Infrared Phys. Technol. 86 207Google Scholar
[15] Zhang L W, Meng Q D, Zhang X L, Yu Q, Lv Y Q, Si J J 2013 Infrared Phys. Technol. 60 29Google Scholar
[16] Zhang L W, Meng Q D, Zhang X L, Lv Y Q 2014 J. Mech. Sci. Technol. 28 2281Google Scholar
[17] Liu X H, Suo Z, Ma Q, Fujimoto H 2000 Eng. Fract. Mech. 66 387Google Scholar
-
表 1 InSb IRFPAs模型的相关材料参数
Table 1. Material parameters of InSb IRFPAs model.
Materials Elastic modulus
E/GPaPoison’s
ratio μTemperatures
T/KInSb chip 409 (in plane) 0.3500 77–300 123 (out of plane) Underfill 0.0002/α 0.3000 77–300 silicon ROIC 163 0.2800 77–300 Indium bump 20.54 0.4326 76 16.24 0.4408 187 12.70 0.4498 370 Negative electrode 79 0.4400 77–300 注: $ \alpha = 22.46 \times {10^{ - 6}} + 5.04 \times {10^{ - 8}} \times {\text{(}}T-273{\text{)}} $, 其中 T 是Kelvin温度. -
[1] 吕衍秋, 鲁星, 鲁正雄, 李墨 2020 航空兵器 27 1Google Scholar
Lv Y Q, Lu X, Lu Z X, Li M 2020 Aero Weaponry 27 1Google Scholar
[2] Rogalski A 2011 Infrared Phys. Technol. 54 136Google Scholar
[3] 胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar
Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar
[4] Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174Google Scholar
[5] 罗宏 2010 激光与红外 40 720Google Scholar
Luo H 2010 Laser & Infrared 40 720Google Scholar
[6] Meng Q D, Zhang X L, Lv Y Q, Si J J 2019 Opt. Quantum Electron. 51 1Google Scholar
[7] Meng Q D, Zhang X L, Lv Y Q, Si J J 2017 Opt. Quantum Electron. 49 211Google Scholar
[8] Hao L C, Huang A B, Lai C X, Chen X, Hao M M, Chen H L, Lu G G, Huang Y, En Y F 2015 Aopc: Optical & Optoelectronic Sensing & Imaging Technology Beijing, China, May 5−7, 2015 96740H-1
[9] 秦朗 2014 硕士学位论文 (辽宁: 大连理工大学)
Qin L 2014 M. S. Thesis (Liaoning: Dalian University of Technology) (in Chinese)
[10] 巩锋, 程鹏, 吴卿, 折伟林, 陈元瑞 2013 激光与红外 43 1146Google Scholar
Gong F, Cheng P, Wu Q, She W L, Chen Y R 2013 Laser & Infrared 43 1146Google Scholar
[11] 柏伟, 庞新义, 赵超 2018 红外 39 8Google Scholar
Bai W, Pang X Y, Zhao C 2018 Infrared 39 8Google Scholar
[12] Rybicki E F, Kanninen M F 1977 Eng. Fract. Mech. 9 931Google Scholar
[13] Irwin G R 1956 Sagamore Res. Conf. Proc. 2 289
[14] Zhang X L, Meng Q D, Lv Y Q, Si J J 2017 Infrared Phys. Technol. 86 207Google Scholar
[15] Zhang L W, Meng Q D, Zhang X L, Yu Q, Lv Y Q, Si J J 2013 Infrared Phys. Technol. 60 29Google Scholar
[16] Zhang L W, Meng Q D, Zhang X L, Lv Y Q 2014 J. Mech. Sci. Technol. 28 2281Google Scholar
[17] Liu X H, Suo Z, Ma Q, Fujimoto H 2000 Eng. Fract. Mech. 66 387Google Scholar
Catalog
Metrics
- Abstract views: 3574
- PDF Downloads: 43
- Cited By: 0