Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-color resonance enhanced multiphoton ionization spectroscopy of o-hydroxybenzonitrile and Franck-Condon simulation

Li Na Li Shu-Xian Wang Lin Wang Hui-Hui Yang Yong-Gang Zhao Jian-Ming Li Chang-Yong

Citation:

Two-color resonance enhanced multiphoton ionization spectroscopy of o-hydroxybenzonitrile and Franck-Condon simulation

Li Na, Li Shu-Xian, Wang Lin, Wang Hui-Hui, Yang Yong-Gang, Zhao Jian-Ming, Li Chang-Yong
PDF
HTML
Get Citation
  • The cyano group is a typical electron-withdrawing group, which has aroused the interest of relevant researchers. Many papers reported the dispersed fluorescence spectra of o-hydroxybenzonitrile, its dimers, and complexes with small molecules, aiming to study the intermolecule hydrogen bond and the vibration features of the electronic ground state. There are also reports on using fluorescence excitation spectra to study excited state vibrations, but no report on the systematical analyzing of the vibration features of excited state spectra. Compared with fluorescence spectroscopy, resonance enhanced multiphoton ionization (REMPI) spectroscopy detects ions to obtain excited state energy level data, which has mass-resolution capability, and eliminates the interference of impurities with different charge-to-mass ratios. The strong electron-withdrawing ability of cyano group results in higher ionization energy for molecules containing cyano groups. Many REMPI experiments on benzonitrile derivatives require two-color lasers. In this paper, two-color resonance enhanced two-photon ionization experiment is performed by using a home-made linear time-of-flight mass spectrometer, and the vibration-resolved REMPI spectrum of o-hydroxybenzonitrile is obtained for the first time. Combining the high-precision density functional theory calculations with the Franck-Condon spectral simulations, the spectral characteristics are analyzed in detail, and a large number of fundamental, overtone and combined vibrations are found. The spectral assignment is carried out as accurately as possible. Most of the fundamental vibrations located at ring are assigned to the in-plane distortion or swing of the ring, which is related to the expansion of the ring during the molecular excitation. Theoretical and experimental results show that the low-frequency signal of REMPI spectrum is strong, the background is low, the band is less, and the resolution is good. As the vibration frequency increases, the signal changes in the worse direction. This is because the low-frequency spectrum mainly comes from the low-frequency fundamental vibrations and a little contribution from overtones. As the vibration frequency increases, the contributions from overtone and combined vibrations gradually increase, resulting in dense bands and low resolution. Theoretical calculations show that the high-order vibration and combination of multi-mode vibrations usually have a lower Franck-Condon factor, so the signal gradually becomes weak as the frequency increases, and the signal-to-noise ratio becomes worse.
      Corresponding author: Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the Key Program of the National Natural Science of China (Grant No. 61835007), the National Natural Science Foundation of China (Grants Nos. 11904215, 61575115), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70), the 111 Project (Grant No. D18001), and the Fund for Shanxi “1331 Project” Key Subjects Construction, China.
    [1]

    Roth W, Imhof P, Kleinermanns K 2001 Phys. Chem. Chem. Phys. 3 1806Google Scholar

    [2]

    Li C, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [3]

    Küpper J, Schmitt M, Kleinermanns K 2002 Phys. Chem. Chem. Phys. 4 4634Google Scholar

    [4]

    Jacoby C, Böhm M, Vu C, Ratzer C, Schmitt M 2006 ChemPhysChem 7 448Google Scholar

    [5]

    Georgieva M K, Angelova P N, Binev I G 2004 J. Mol. Struct. 692 23Google Scholar

    [6]

    Biswas N, Wategaonkar S, Watanabe T, Ebata T, Mikami N 2004 Chem. Phys. Lett. 394 61Google Scholar

    [7]

    Broquier M, Lahmani F, Zehnacker-Rentien A, Brenner V, Millié P, Peremans A 2001 J. Phys. Chem. A 105 6841Google Scholar

    [8]

    Le Barbu-Debus K, Broquier M, Lahmani F, Zehnacker-Rentien A 2005 Mol. Phys. 103 1655Google Scholar

    [9]

    Lahmani F, Zehnacker-Rentien A, Broquier M 2002 J. Photoch. Photobio. A 154 41Google Scholar

    [10]

    Lahmani F, Broquier M, Zehnacker-Rentien A 2002 Chem. Phys. Lett. 354 337Google Scholar

    [11]

    Kopec S, Ottiger P, Leutwyler S, Köppel H 2015 J. Chem. Phys. 142 84308Google Scholar

    [12]

    Imhof P, Kleinermanns K 2001 J. Phys. Chem. A 105 8922Google Scholar

    [13]

    Zhao Y, Jin Y, Li C, Jia S 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [14]

    Hao J, Duan C, Yang Y, Li C, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [15]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 53301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 53301Google Scholar

    [16]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 93301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 93301Google Scholar

    [17]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, et al. 2009 Gaussian 09 (Pittsburgh: Gaussian Inc. )

    [18]

    Santoro F, Lami A, Improta R, Bloino J, Barone V 2008 J. Chem. Phys. 128 224311Google Scholar

    [19]

    Guo M, He R, Dai Y, Shen W, Li M, Zhu C, Lin S H. 2012 J. Chem. Phys. 136 144313Google Scholar

    [20]

    Li C, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 44311Google Scholar

    [21]

    Ullrich S, Geppert W D, Dessent C E H, Müller-Dethlefs K 2000 J. Phys. Chem. A 104 11864

    [22]

    Schneider M, Wilke M, Hebestreit ML, Ruiz-Santoyo J A, Álvarez-Valtierra L, Yi J T, Meerts W L, Pratt D W, Schmitt M 2017 Phys. Chem. Chem. Phys. 19 21364Google Scholar

    [23]

    Qin C, TzengS Y, Zhang B, Tzeng W B 2014 Acta Phys-Chim. Sin. 30 1416Google Scholar

    [24]

    Huang H C, Shiung K S, Jin B Y, Tzeng W B 2013 Chem. Phys. 425 114Google Scholar

    [25]

    Xu Y, Tzeng S Y, Shivatare V, Takahashi K, Zhang B, Tzeng W B 2015 J. Chem. Phys. 142 124314Google Scholar

    [26]

    Isozaki T, Sakeda K, Suzuki T, Ichimura T 2010 J. Chem. Phys. 132 214308Google Scholar

    [27]

    Huang H C, Jin B Y, Tzeng W B 2012 J. Photoch. and Photobio. A 243 73Google Scholar

    [28]

    Wu P Y, Tzeng S Y, Hsu Y C, Tzeng W B 2017 J. Mol. Spectrosc. 332 3Google Scholar

    [29]

    Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 11144Google Scholar

    [30]

    Qin C, Tzeng S Y, Zhang B, Tzeng W B 2019 J. Mol. Spectrosc. 355 26Google Scholar

    [31]

    Wilson E B 1934 Phys. Rev. A 45 706Google Scholar

    [32]

    Hollas J M 2004 Modern Spectroscopy (WEST SUSSEX: J. Wiley & Sons) p249

    [33]

    Zhao Y, Jin Y, Hao J, Yang Y, Li C, Jia S 2018 Chem. Phys. Lett. 711 127Google Scholar

  • 图 1  苯酚(a)、苯腈(b)和顺式邻羟基苯腈(c)的稳定构型. 优化结构时采用的原子编号标于原子上

    Figure 1.  Stable configurations of phenol (a), benzonitrile (b), and cis-ortho-hydroxybenzonitrile (c). The atom labels used in the structure optimization are marked on the atoms.

    图 2  邻羟基苯腈的双色共振多光子电离光谱(a), 及其B3LYP/aug-cc-pvtz理论(b)和B3LYP/6-311++G(d, p)理论(c)的Franck-Condon模拟

    Figure 2.  Two-color resonance enhanced multiphoton ionization spectrum of o-hydroxybenzonitrile (a), and its Franck-Condon simulations based on B3LYP/aug-cc-pvtz level (b) and B3LYP/6-311++G(d, p) level (c).

    图 3  实验发现的激发态S1较强的振动模及其频率, 括号内数字是理论计算的频率. 实心黑色圆点代表各原子振动到达的最远点位, 空心圆圈代表C原子平衡点位, H原子用小点表示, 平衡点的O和N分别用红色和粉色表示

    Figure 3.  Strong vibration modes of the excited state S1 and their vibration frequencies found in the experiment. The numbers in parentheses are the theoretically calculated frequencies. The solid black dot represents the biggest displacement, the open circle represents the equilibrium point of the C atom. The H atom is represented by a small dot, and the O and N of the equilibrium point are represented by red and pink dots, respectively.

    图 4  基于B3 LYP/aug-cc-pvtz计算的Franck-Condon光谱及其谱带的归属, 蓝色竖线代表振动模, 线的高度代表了振动模的强度. 大的红色数字代表了计算的所有振动频率按升序排定的序号, 上标数字代表了振动模的泛频次数

    Figure 4.  Franck-Condon simulation and the assignment of its bands calculated based on B3 LYP/aug-cc-pvtz. The blue vertical line represents the vibration mode, and its height represents the strength of the vibration mode. The big red number represents the sequence number of all calculated vibration frequencies in ascending order, and the superscript number represents the vibrational quantum number of overtone.

    表 1  双色REMPI测量的电子振动跃迁能、振动频率和相对强度、密度泛函理论(B3LYP/6-311++G(d, p))计算的激发态振动频率(修正因子为0.971)及光谱归属(单位: cm–1)

    Table 1.  Measured electronic vibration transition energy, vibration frequency, and relative intensity by two-color REMPI, excited state vibration frequency calculated by density functional theory of B3LYP/6-311++G(d, p) level (scaler factor: 0.971), and spectral assignment (in cm–1).

    跃迁能测量频率相对强度计算频率归属a跃迁能测量频率相对强度计算频率归属a
    339730100$0^0_0 $34715742209b${}^2_0 $
    3410212980131$15^1_0 $3475177856b${}^1_0 $10a${}^1_0 $γCN${}^1_0 $
    3415217917γCN${}^2_0 $34781808189b${}^1_0 $${15}^2_0 $γCN${}^2_0 $
    3423125823$15^2_0 $34787814399b${}^1_0 $6b${}^1_0 $/${1}^1_0 $${15}^1_0 $
    3424327017γCN${}^3_0 $347958221010a${}^3_0 $γCN${}^1_0 $
    342793064$15^1_0 $γCN${}^2_0 $3480383037827${12}^1_0 $
    34306333910a${}^1_0 $γCN${}^1_0 $34844871149b${}^2_0 $${15}^1_0 $
    34344371643719b${}^1_0 $34859886206b${}^2_0 $
    343613883$15^3_0 $34916943346b${}^1_0 $9b${}^1_0 $${15}^1_0 $/${1}^1_0 $${15}^2_0 $
    343703972$15^1_0 $γCN${}^3_0 $349359617212b${}^1_0 $${15}^1_0 $/9b${}^1_0 $βCN${}^1_0 $
    34397424710a${}^1_0 $γCN${}^2_0 $349811008136b${}^1_0 $${15}^1_0 $
    34416443424436b${}^1_0 $35024105135${1}^1_0 $9b${}^1_0 $
    34436463310a${}^1_0 $$15^1_0 $γCN${}^1_0 $35062108933${12}^1_0 $${15}^2_0 $/6b${}^1_0 $9b${}^1_0 $${15}^2_0 $
    34464491810a${}^2_0 $35094112132${1}^1_0 $6b${}^1_0 $
    34473500309b${}^1_0 $$15^1_0 $35130115634${4}^1_0 $6b${}^1_0 $${15}^1_0 $
    34485512510a${}^1_0 $γCN${}^3_0 $351741201191204${13}^1_0 $
    3449452155206a${}^1_0 $352011227296b${}^1_0 $10a${}^1_0 $γCN${}^1_0 $
    3452354959b${}^1_0 $γCN${}^2_0 $352301257276b${}^2_0 $9b${}^1_0 $
    34545572256b${}^1_0 $${15}^1_0 $35247127443${12}^1_0 $6b${}^1_0 $
    345575828586βCN${}^1_0 $352921319296b${}^3_0 $
    3459462176b${}^1_0 $γCN${}^2_0 $35298132524${13}^1_0 $${15}^1_0 $
    34603630149b${}^1_0 $${15}^2_0 $3530613332118b${}^1_0 $6b${}^1_0 $
    3465167951679${1}^1_0 $353281355126b${}^1_0 $16b${}^2_0 $
    3467570276b${}^1_0 $${15}^2_0 $
    注: a β, 平面内的摇摆; γ, 垂直于环平面的振动.
    DownLoad: CSV

    表 2  B3LYP/aug-cc-pvtz理论计算的邻羟基苯腈的电子基态S0和激发态S1的键长和键角

    Table 2.  Bond lengths and bond angles of o-hydroxybenzonitrile in S0 and S1 states calculated with B3LYP/aug-cc-pvtz level.

    S1S0Δ(S1–S0)
    键长/Å
    C1—C21.4541.4070.047
    C2—C31.4111.4010.010
    C3—C41.4191.3820.037
    C4—C51.3991.3950.004
    C5—C61.4141.3850.029
    C6—C11.3991.3930.006
    C1—O111.3331.352–0.019
    O11—H120.9760.9670.009
    C2—C131.3951.424–0.029
    C13—N141.1711.1540.017
    C4—H81.0821.0800.002
    C3—H71.0791.081–0.002
    C6—H101.0801.0800
    C5—H91.0781.081–0.003
    键角/(°)
    C1—O11—H12109.995110.823–0.828
    C2—C13—N14174.683175.853–1.170
    DownLoad: CSV
  • [1]

    Roth W, Imhof P, Kleinermanns K 2001 Phys. Chem. Chem. Phys. 3 1806Google Scholar

    [2]

    Li C, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [3]

    Küpper J, Schmitt M, Kleinermanns K 2002 Phys. Chem. Chem. Phys. 4 4634Google Scholar

    [4]

    Jacoby C, Böhm M, Vu C, Ratzer C, Schmitt M 2006 ChemPhysChem 7 448Google Scholar

    [5]

    Georgieva M K, Angelova P N, Binev I G 2004 J. Mol. Struct. 692 23Google Scholar

    [6]

    Biswas N, Wategaonkar S, Watanabe T, Ebata T, Mikami N 2004 Chem. Phys. Lett. 394 61Google Scholar

    [7]

    Broquier M, Lahmani F, Zehnacker-Rentien A, Brenner V, Millié P, Peremans A 2001 J. Phys. Chem. A 105 6841Google Scholar

    [8]

    Le Barbu-Debus K, Broquier M, Lahmani F, Zehnacker-Rentien A 2005 Mol. Phys. 103 1655Google Scholar

    [9]

    Lahmani F, Zehnacker-Rentien A, Broquier M 2002 J. Photoch. Photobio. A 154 41Google Scholar

    [10]

    Lahmani F, Broquier M, Zehnacker-Rentien A 2002 Chem. Phys. Lett. 354 337Google Scholar

    [11]

    Kopec S, Ottiger P, Leutwyler S, Köppel H 2015 J. Chem. Phys. 142 84308Google Scholar

    [12]

    Imhof P, Kleinermanns K 2001 J. Phys. Chem. A 105 8922Google Scholar

    [13]

    Zhao Y, Jin Y, Li C, Jia S 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [14]

    Hao J, Duan C, Yang Y, Li C, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [15]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 53301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 53301Google Scholar

    [16]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 93301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 93301Google Scholar

    [17]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, et al. 2009 Gaussian 09 (Pittsburgh: Gaussian Inc. )

    [18]

    Santoro F, Lami A, Improta R, Bloino J, Barone V 2008 J. Chem. Phys. 128 224311Google Scholar

    [19]

    Guo M, He R, Dai Y, Shen W, Li M, Zhu C, Lin S H. 2012 J. Chem. Phys. 136 144313Google Scholar

    [20]

    Li C, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 44311Google Scholar

    [21]

    Ullrich S, Geppert W D, Dessent C E H, Müller-Dethlefs K 2000 J. Phys. Chem. A 104 11864

    [22]

    Schneider M, Wilke M, Hebestreit ML, Ruiz-Santoyo J A, Álvarez-Valtierra L, Yi J T, Meerts W L, Pratt D W, Schmitt M 2017 Phys. Chem. Chem. Phys. 19 21364Google Scholar

    [23]

    Qin C, TzengS Y, Zhang B, Tzeng W B 2014 Acta Phys-Chim. Sin. 30 1416Google Scholar

    [24]

    Huang H C, Shiung K S, Jin B Y, Tzeng W B 2013 Chem. Phys. 425 114Google Scholar

    [25]

    Xu Y, Tzeng S Y, Shivatare V, Takahashi K, Zhang B, Tzeng W B 2015 J. Chem. Phys. 142 124314Google Scholar

    [26]

    Isozaki T, Sakeda K, Suzuki T, Ichimura T 2010 J. Chem. Phys. 132 214308Google Scholar

    [27]

    Huang H C, Jin B Y, Tzeng W B 2012 J. Photoch. and Photobio. A 243 73Google Scholar

    [28]

    Wu P Y, Tzeng S Y, Hsu Y C, Tzeng W B 2017 J. Mol. Spectrosc. 332 3Google Scholar

    [29]

    Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 11144Google Scholar

    [30]

    Qin C, Tzeng S Y, Zhang B, Tzeng W B 2019 J. Mol. Spectrosc. 355 26Google Scholar

    [31]

    Wilson E B 1934 Phys. Rev. A 45 706Google Scholar

    [32]

    Hollas J M 2004 Modern Spectroscopy (WEST SUSSEX: J. Wiley & Sons) p249

    [33]

    Zhao Y, Jin Y, Hao J, Yang Y, Li C, Jia S 2018 Chem. Phys. Lett. 711 127Google Scholar

  • [1] Wang Lin, Li Shu-Xian, Li Jun-Wei, Jiao Yue-Chun, Yang Yong-Gang, Zhao Jian-Ming, Li Chang-Yong. One-color resonance enhanced two-photon ionization spectroscopy of phenylacetonitrile and its Franck-Condon simulation. Acta Physica Sinica, 2023, 72(13): 133301. doi: 10.7498/aps.72.20230278
    [2] Zhao Yan, Li Na, Dang Si-Yuan, Yang Guo-Quan, Li Chang-Yong. Two-color resonance enhanced two-photon ionization and mass analyzed threshold ionization spectroscopy of p-chlorobenzonitrile. Acta Physica Sinica, 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [3] Tu Qian, Chen You-Long, Liu Kai, Wang Feng, Zhang Xiao-Fan, Yang Yi, Tang Fu-Ming, Liao Qing. An eikonal approximation model for two-color two-photon attosecond interferometric spectrum. Acta Physica Sinica, 2021, 70(11): 113202. doi: 10.7498/aps.70.20201785
    [4] Two-color resonance enhanced multiphoton ionization spectroscopy of o-hydroxybenzonitrile and Franck-Condon simulation. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211659
    [5] Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei. Manipulation of lattice vibration by ultrafast spectroscopy. Acta Physica Sinica, 2017, 66(1): 014203. doi: 10.7498/aps.66.014203
    [6] Li Xin, Zhao Yan, Jin Ying-Hui, Wang Xiao-Rui, Yu Xie-Qiu, Wu Mei, Han Yu-Xing, Yang Yong-Gang, Li Chang-Yong, Jia Suo-Tang. One color resonance two-photon ionization spectra of p-methoxybenzonitrile. Acta Physica Sinica, 2017, 66(9): 093301. doi: 10.7498/aps.66.093301
    [7] Du Jian-Bin, Wu De-Qi, Tang Yan-Lin, Long Zheng-Wen. Molecular structure and spectrum of dibutyl phthalate in an external electric field. Acta Physica Sinica, 2015, 64(7): 073101. doi: 10.7498/aps.64.073101
    [8] Long Jing-Ming, Wang Hua-Sheng. Resonance enhanced multiphoton ionization spectra of HCl:analysis of F1Δ2 spectral perturbation. Acta Physica Sinica, 2013, 62(16): 163302. doi: 10.7498/aps.62.163302
    [9] Li Ming, Dai Chang-Jian, Xie Jun. Study of odd-parity states of Sm atom with two-photon ionization detection method. Acta Physica Sinica, 2010, 59(5): 3154-3161. doi: 10.7498/aps.59.3154
    [10] Fan Qun-Chao, Feng Hao, Sun Wei-Guo. Studies on the full vibrational spectra and dissociation energies of some diatomic ions. Acta Physica Sinica, 2010, 59(1): 203-209. doi: 10.7498/aps.59.203
    [11] Zhao Hong-Ying, Dai Chang-Jian, Guan Feng. Two-step resonant photoionization spectra of Sm atom. Acta Physica Sinica, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [12] Ma Jin-Long, Xu Kai-Jun, Li Zhe, Jin Biao-Bing, Fu Rong, Zhang Cai-Hong, Ji Zheng-Ming, Zhang Cang, Chen Zhao-Xu, Chen Jian, Wu Pei-Heng. Temperature-dependent terahertz spectroscopy of D-, L- and DL-ornidazole. Acta Physica Sinica, 2009, 58(9): 6101-6107. doi: 10.7498/aps.58.6101
    [13] Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng, Ying Xue-Nong, Zhang Liang, Wu Wen-Hui, Shen Yi-Fan. Measurements of dimethyl phthalate series by the reed-vibration mechanical spectroscopy for liquids. Acta Physica Sinica, 2007, 56(11): 6547-6551. doi: 10.7498/aps.56.6547
    [14] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [15] Xu Can, Cao Juan, Gao Chen-Yang. Calculation of structure and properties of one-dimensional silica nanomaterials based on first-principle. Acta Physica Sinica, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [16] ZHANG LI-MIN, CHEN JUN, XU HAI-FENG, DAI JING-HUA, LIU SHI-LIN, CHEN CONG-XIANG, MA XING-XIAO. (2+1) REMPI SPECTRUM OF RYDBERG STATES OF S ATOMS IN THE 243—263 nm REGION. Acta Physica Sinica, 1999, 48(7): 1204-1209. doi: 10.7498/aps.48.1204
    [17] LI HONG-NIAN, XU YA-BO, LI HAI-YANG, HE PEI-MO, BAO SHI-NING. RAMAN SPECTRUM STUDY OF PHONON MODES FOR SINGLE-WALL CARBON NANOTUBES. Acta Physica Sinica, 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
    [18] LU QING-ZHENG, DING CHUAN-FAN, GAO JIAN-MI, KONG FAN-AO. A ROTATIONAL ANALYSIS OF UV MULTIPHOTON IONIZATION SPECTRUM OF SiH4. Acta Physica Sinica, 1991, 40(1): 39-42. doi: 10.7498/aps.40.39
    [19] ZHANG PENG-XIANG, GAO XIAO-PING, ZHUANG WEI-PING. SURFACE ENHANCED RAMAN SCATTERING FROM BENZOIC ACID, SALICYLIC ACID AND P-HYDROXYBENZOIC ACID IN Ag COLLOIDS. Acta Physica Sinica, 1985, 34(12): 1603-1612. doi: 10.7498/aps.34.1603
    [20] CHANG HUN-CHUN, CHANG CHIH-SAN. THE VIBRATIONAL SPECTRA OF ROCHELLE SALT. Acta Physica Sinica, 1959, 15(10): 559-564. doi: 10.7498/aps.15.559
  • supplement 2-20211659-补充材料-end.pdf supplement
Metrics
  • Abstract views:  4403
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2021
  • Accepted Date:  22 September 2021
  • Available Online:  14 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回