Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One-color resonance enhanced two-photon ionization spectroscopy of phenylacetonitrile and its Franck-Condon simulation

Wang Lin Li Shu-Xian Li Jun-Wei Jiao Yue-Chun Yang Yong-Gang Zhao Jian-Ming Li Chang-Yong

Citation:

One-color resonance enhanced two-photon ionization spectroscopy of phenylacetonitrile and its Franck-Condon simulation

Wang Lin, Li Shu-Xian, Li Jun-Wei, Jiao Yue-Chun, Yang Yong-Gang, Zhao Jian-Ming, Li Chang-Yong
cstr: 32037.14.aps.72.20230278
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Phenylacetonitrile (PAN) is widely used in the synthesis of medicines, pesticides, dyes, optoelectronic materials and quinoline derivatives, and has attracted much attention in related fields. In this paper, we report the one-color resonance enhanced two-photon ionization spectra of PAN obtained with ultrasonic molecular beam technique for the first time. The band origin of the S1 ← S0 electronic transition is determined to be (37646 ± 2) cm–1. Density functional theory B3LYP/6-311G++(d, p) and B3LYP/aug-cc-pvtz are used to calculate the structures, energy and vibrational frequencies of the molecule. Based on these calculations Franck-Condon spectral simulations are performed. The measured vibrational frequencies are analyzed in detail. Combined with theoretical calculation, the spectral assignments are given as accurately as possible. Theoretical and experimental results are in good agreement with each other, and show that the spectrum in the low frequency region has a great signal-noise ratio and resolution, while in the high frequency region the spectrum shows opposite characteristics, revealing that the high background in high frequency region originates from dense and weak overtone and combined vibrations. Many spectral bands are found, and most of them may be assigned to the in-plane ring deformation, and theoretical calculations suggest that this is related to the expansion of the aromatic ring during the transition.
      Corresponding author: Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61835007, 12241408, 61575115), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_17R70), the 111 Project (Grant No. D18001), and the Fund for Shanxi ‘‘1331 Project” Key Subjects Construction, China.
    [1]

    王璇 2016 硕士学位论文 (北京: 中国矿业大学)

    Wang X 2016 M. S. Thesis (Beijing: China University of Mining and Technology) (in Chinese)

    [2]

    温俏冬 2015 博士学位论文 (杭州: 浙江工业大学)

    Wen Q D 2015 Ph. D. Dissertation (Hanzhou: Zhejiang University of Technology) (in Chinese)

    [3]

    Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar

    [4]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [5]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [6]

    李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇 2022 物理学报 71 023301Google Scholar

    Li Na, Li S X, Wang L, Wang H H, Yang Y G, Zhao J M, Li C Y 2022 Acta Phys. Sin. 71 023301Google Scholar

    [7]

    Juchnovski I N, Binev I G 1975 J. Organomet. Chem. 99 1Google Scholar

    [8]

    Croisat D, Seyden-Penne J, Strzalko T, Wartaki L, Corset J, Froment F 1992 J. Org. Chem. 57 6435Google Scholar

    [9]

    Binev I G, Tsenov J A, Velcheva E A, Juchnovski 1995 J. Mol. Struct. 344 205Google Scholar

    [10]

    Corset J, Castellà-Ventura M, Froment F, Strzalko T, Wartski L 2002 Spectrochim. Acta A 58 1971Google Scholar

    [11]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301Google Scholar

    [12]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301Google Scholar

    [13]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303Google Scholar

    [14]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar

    [15]

    Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) p84

    [16]

    姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210Google Scholar

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210Google Scholar

    [17]

    Sang T P, Sang K K, Kim M S 2001 J. Chem. Phys. 114 5568Google Scholar

    [18]

    Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [19]

    Hao J, Duan C, Yang Y, Li C Y, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [20]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar

    [21]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2019 Gaussian 16 (Wallingford CT: Gaussian Inc.)

    [22]

    Bloino J, Biczysko M, Crescenzi O, Barone V 2008 J. Chem. Phys. 128 244105Google Scholar

    [23]

    Wilson E B 1934 Phys. Rev. 45 706Google Scholar

    [24]

    Varsanyi G, Hilger A 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) p57

    [25]

    Kemp D J, Whalley L E, Gardner A M, Tuttle W D, Warner L G, Wright T G 2019 J. Chem. Phys. 150 064306Google Scholar

    [26]

    Kemp D J, Whalley L E, Tuttle W D, Gardner A M, Speake B T, Wright T G 2018 Phys. Chem. Chem. Phys. 20 12503Google Scholar

    [27]

    Helm R M, Vogel H P, Neusser H J 1997 Chem. Phys. Lett. 270 285Google Scholar

    [28]

    Peng W C, Wu P Y, Tzeng S Y, Tzeng W B 2018 Chem. Phys. Lett. 700 145Google Scholar

    [29]

    赵岩 2019 博士学位论文 (太原: 山西大学)

    Zhao Y 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [30]

    Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 1114Google Scholar

    [31]

    Neuhauser R G, Siglow K, Neusser H J 1997 J. Chem. Phys. 106 896Google Scholar

    [32]

    Lu K T, Eiden G C, Weisshaar J C 1992 J. Phys. Chem. 96 9742Google Scholar

    [33]

    Wang J, Qiu X J, Wang Y M, Zhang S, Zhang B 2012 Chin. J. Chem. Phys. 25 526Google Scholar

  • 图 1  实验系统原理图 MCP, 微通道板; PV, 脉冲阀; HV, 脉冲高压电源; SR430, 计数器; DG645, 数字脉冲延时发生器; 2f和3f, 2倍频和3倍频; NF, 中性密度衰减片; FL, 聚焦镜

    Figure 1.  Experimental setup. MCP, microchannel plate; PV, pulse valve; HV, high voltage pulse power supply; SR430, counter; DG645, versatile digital delay/pulse generator; 2f and 3f, doubled and tripled frequency; NF, neutral density attenuators; FL, focusing lens.

    图 2  PAN分子的稳定构型

    Figure 2.  Stable configuration of PAN.

    图 3  (a) PAN的单色共振多光子电离光谱; (b), (c) 分别为B3LYP/aug-cc-pvtz理论和B3LYP/6-311++G(d, p)理论的Franck-Condon模拟

    Figure 3.  (a) One-color resonance enhanced multiphoton ionization spectrum of PAN; (b), (c) Franck-Condon simulations based on theoretical calculations of B3LYP/aug-cc-pvtz and B3LYP/6-311++G(d, p), respectively.

    图 4  实验发现的激发态S1较强的振动模及其频率, 括号内数字是理论计算的频率. 实心黑色圆点代表各原子振动到达的最远点位, 空心圆圈代表C原子平衡点位, H原子用小点表示, 平衡点的N原子用粉色表示

    Figure 4.  Strong vibration modes of the excited state S1 and their vibration frequencies found in the experiment. The numbers in parentheses are the theoretically calculated frequencies. The solid black dot represents the biggest displacement, the open circle represents the equilibrium point of the C atom. The H atom is represented by a small dot, and the N atom of the equilibrium point is represented by pink dot.

    表 1  单色REMPI测量的电子振动跃迁能、振动频率和相对强度、密度泛函理论计算的激发态振动频率、光谱归属及文献[8]报道的电子基态振动频率(单位: cm–1)

    Table 1.  Measured electronic vibration transition energies, vibration frequencies, and relative intensities by one-color REMPI, excited state vibration frequencies calculated by density functional theories, spectral assignments and the frequencies of the S0 state measured by infrared spectroscopy[8] (unit: cm–1).

    跃迁能实验 a)相对强度振动频率 b)振动频率c)模式归属d)Ire)
    376460100$ {0}_{0}^{0} $, band origin
    376904422939γ$ {{\text{CH}}_{2}}_{0}^{1} $
    3777012419125125$ {\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{1}{\text{CN}}_{0}^{1} $
    379202471239249$ {\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{2}{\text{CN}}_{0}^{2} $
    3797139829393392$ 6{a}_{0}^{1} $
    381114652454460$ 16{a}_{0}^{1} $
    3817552973527526$ 6{b}_{0}^{1} $
    3820756122562563β$ {\text{CN}}_{0}^{1} $
    382986525652651$ 6{b}_{0}^{1}{\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{1} $
    3840275646757758$ {1}_{0}^{1} $
    384778313840836$ {1}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}}_{0}^{2} $
    3852587911882883$ {1}_{0}^{1}{\beta {\rm{C}}{{\rm{H}}}_{2}{\rm{C}}{\rm{N}}}_{0}^{1}{1}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}{\rm{C}}{\rm{N}}}_{0}^{1} $
    3856892266922921${\nu \text{C-CN} }_{0}^{1}$940
    3859895229947948$ 18{a}_{0}^{1} $969
    3860495830946955β$ {\text{CN}}_{0}^{1}6{a}_{0}^{1} $988
    3861797118962966$ {12}_{0}^{1} $1003
    386901044410471044$ {12}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}}_{0}^{2} $1029
    3880011542411541156$ {13}_{0}^{1} $1076
    388121166511551170$ {11}_{0}^{2} $1157
    388561210312011215$ {12}_{0}^{1}{10 b}_{0}^{2} $1184
    388781232812331234$ {13}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2}{13}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{1} $1203
    3891312671812541255${\nu \text{C-C}{\text{H} }_{2}\text{CN} }_{0}^{1}$
    3893412881712841285$ {\text{1}}_{0}^{1}6{b}_{0}^{1} $
    3896313171213151313${\nu \text{C-CN} }_{0}^{1}6{a}_{0}^{1}$
    3896913231313191321$ {1}_{0}^{1} $β$ {\text{CN}}_{0}^{1} $1336
    389981352513471353$ {1}_{0}^{1}16{b}_{0}^{2} $
    390041358913551358$ {12}_{0}^{1}6{a}_{0}^{1} $
    390651419614171418$ {18 a}_{0}^{1}6{a}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2} $1415
    3909614502114481447${\nu \text{C-CN} }_{0}^{1}6{b}_{0}^{1}$1454
    3910014543414531452$ 9{b}_{0}^{1}{\text{15}}_{0}^{1} $
    3910814621214661465$ 18{a}_{0}^{1}6{a}_{0}^{1}{\beta \text{C}{\text{H}}_{2}\text{CN}}_{0}^{1} $
    3912914831714741474$ {18 a}_{0}^{1}6{b}_{0}^{1} $1495
    3914615001415071504$ 8{b}_{0}^{1} $
    391541508715091511$ {18 a}_{0}^{1}\text{b}{{\rm{C}}{\rm{N}}}_{0}^{1} $
    391621516715141518$ {1}_{0}^{2} $
    391821536415361542$ 8{a}_{0}^{1}16{b}_{0}^{2} $
    392001554615471549$ {13}_{0}^{1}6{a}_{0}^{1} $1586
    392171571515461569$ {12}_{0}^{1}6{b}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2} $1602
    3932816822316801682$ {13}_{0}^{1}6{b}_{0}^{1} $
    3934717011117041707$ {18 a}_{0}^{1}{1}_{0}^{1} $
    393601714317161719$ {13}_{0}^{1}\text{b}{{\rm{C}}{\rm{N}}}_{0}^{1} $
    393761730517191725$ {12}_{0}^{1}{1}_{0}^{1} $
    注: a) 实验振动频率是相对PAN分子的激发能(37646 cm–1)的偏移;
    b) 理论计算的振动频率来自于B3 LYP/6-311++G(d, p)方法, 修正因子为0.9726;
    c) 理论计算的振动频率来自于B3 LYP/aug-cc-pvtz方法, 修正因子为0.9719;
    d) β, 平面内的摇摆; γ, 垂直于环平面的振动; ν, 伸缩振动;
    e) 文献[8]采用红外光谱技术测量的电子基态的振动频率.
    DownLoad: CSV

    表 2  B3LYP/6-311++G(d, p)理论计算的PAN分子电子基态S0和第一电子激发态S1的结构参数

    Table 2.  Structural parameters of the electronic ground state S0 and the first electronic excited state S1 of the PAN molecule calculated at the level of B3LYP/6-311++G(d, p).

     S1
    S0
    Δ (S1—S0)
     键长/Å (1 Å = 10–10 m)
    C1—C21.427821.399110.029
    C2—C31.423281.391480.032
    C3—C41.421891.395730.026
    C4—C51.423471.395120.028
    C5—C61.419491.391680.028
    C6—C11.428441.394470.034
    C1—C121.502371.52486–0.022
    C2—H71.083001.08578–0.003
    C3—H81.082151.08413–0.002
    C4—H91.082701.08396–0.001
    C5—H101.081631.08406–0.002
    C6—H111.082201.08399–0.002
    C12—H131.102451.095550.007
    C12—H141.102451.095550.007
    C12—C151.458681.46019–0.002
    C15—N161.153511.152800.001
     键角/(°)
    C1—C12—
    C15
    115.76127115.063860.697
    C12—C15—
    N16
    179.02074179.70812–0.687
    DownLoad: CSV
  • [1]

    王璇 2016 硕士学位论文 (北京: 中国矿业大学)

    Wang X 2016 M. S. Thesis (Beijing: China University of Mining and Technology) (in Chinese)

    [2]

    温俏冬 2015 博士学位论文 (杭州: 浙江工业大学)

    Wen Q D 2015 Ph. D. Dissertation (Hanzhou: Zhejiang University of Technology) (in Chinese)

    [3]

    Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar

    [4]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [5]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [6]

    李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇 2022 物理学报 71 023301Google Scholar

    Li Na, Li S X, Wang L, Wang H H, Yang Y G, Zhao J M, Li C Y 2022 Acta Phys. Sin. 71 023301Google Scholar

    [7]

    Juchnovski I N, Binev I G 1975 J. Organomet. Chem. 99 1Google Scholar

    [8]

    Croisat D, Seyden-Penne J, Strzalko T, Wartaki L, Corset J, Froment F 1992 J. Org. Chem. 57 6435Google Scholar

    [9]

    Binev I G, Tsenov J A, Velcheva E A, Juchnovski 1995 J. Mol. Struct. 344 205Google Scholar

    [10]

    Corset J, Castellà-Ventura M, Froment F, Strzalko T, Wartski L 2002 Spectrochim. Acta A 58 1971Google Scholar

    [11]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301Google Scholar

    [12]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301Google Scholar

    [13]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303Google Scholar

    [14]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar

    [15]

    Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) p84

    [16]

    姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210Google Scholar

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210Google Scholar

    [17]

    Sang T P, Sang K K, Kim M S 2001 J. Chem. Phys. 114 5568Google Scholar

    [18]

    Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [19]

    Hao J, Duan C, Yang Y, Li C Y, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [20]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar

    [21]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2019 Gaussian 16 (Wallingford CT: Gaussian Inc.)

    [22]

    Bloino J, Biczysko M, Crescenzi O, Barone V 2008 J. Chem. Phys. 128 244105Google Scholar

    [23]

    Wilson E B 1934 Phys. Rev. 45 706Google Scholar

    [24]

    Varsanyi G, Hilger A 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) p57

    [25]

    Kemp D J, Whalley L E, Gardner A M, Tuttle W D, Warner L G, Wright T G 2019 J. Chem. Phys. 150 064306Google Scholar

    [26]

    Kemp D J, Whalley L E, Tuttle W D, Gardner A M, Speake B T, Wright T G 2018 Phys. Chem. Chem. Phys. 20 12503Google Scholar

    [27]

    Helm R M, Vogel H P, Neusser H J 1997 Chem. Phys. Lett. 270 285Google Scholar

    [28]

    Peng W C, Wu P Y, Tzeng S Y, Tzeng W B 2018 Chem. Phys. Lett. 700 145Google Scholar

    [29]

    赵岩 2019 博士学位论文 (太原: 山西大学)

    Zhao Y 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [30]

    Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 1114Google Scholar

    [31]

    Neuhauser R G, Siglow K, Neusser H J 1997 J. Chem. Phys. 106 896Google Scholar

    [32]

    Lu K T, Eiden G C, Weisshaar J C 1992 J. Phys. Chem. 96 9742Google Scholar

    [33]

    Wang J, Qiu X J, Wang Y M, Zhang S, Zhang B 2012 Chin. J. Chem. Phys. 25 526Google Scholar

  • [1] Zhao Yan, Li Na, Dang Si-Yuan, Yang Guo-Quan, Li Chang-Yong. Two-color resonance enhanced two-photon ionization and mass analyzed threshold ionization spectroscopy of p-chlorobenzonitrile. Acta Physica Sinica, 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [2] Li Na, Li Shu-Xian, Wang Lin, Wang Hui-Hui, Yang Yong-Gang, Zhao Jian-Ming, Li Chang-Yong. Two-color resonance enhanced multiphoton ionization spectroscopy of o-hydroxybenzonitrile and Franck-Condon simulation. Acta Physica Sinica, 2022, 71(2): 023301. doi: 10.7498/aps.71.20211659
    [3] Xu You-Jie, Guo Ying-Chun, Wang Bing-Bing. Quantum chemical calculation of normal vibration frequencies of polyatomic molecules. Acta Physica Sinica, 2022, 71(9): 093101. doi: 10.7498/aps.71.20212108
    [4] Yang Jian-Hua, Ma Qiang, Wu Cheng-Jin, Liu Hou-Guang. A periodic vibrational resonance in the fractional-order bistable system. Acta Physica Sinica, 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [5] Li Xin, Zhao Yan, Jin Ying-Hui, Wang Xiao-Rui, Yu Xie-Qiu, Wu Mei, Han Yu-Xing, Yang Yong-Gang, Li Chang-Yong, Jia Suo-Tang. One color resonance two-photon ionization spectra of p-methoxybenzonitrile. Acta Physica Sinica, 2017, 66(9): 093301. doi: 10.7498/aps.66.093301
    [6] Cao Shan, Li Jun, Liu Yuan-Qiong, Wang Kai, Lin Wei, Lei Hai-Le. Effect of local coordination environment on molecule vibration in N2-molecule solid. Acta Physica Sinica, 2016, 65(3): 033103. doi: 10.7498/aps.65.033103
    [7] Cao Shan, Liu Jiang-Ping, Li Jun, Wang Kai, Lin Wei, Lei Hai-Le. Infrared absorption characteristics of solid nitrogen at near-triple point temperatures. Acta Physica Sinica, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [8] Zhang Xiao-Li, Lin Shu-Yu, Fu Zhi-Qiang, Wang Yong. Study on resonance frequency and equivalent circuit parameters of a thin disk in flexural vibration. Acta Physica Sinica, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [9] Lin Min, Meng Ying. Frequency coupling in bistable system and the mechanism of stochastic resonance. Acta Physica Sinica, 2010, 59(6): 3627-3632. doi: 10.7498/aps.59.3627
    [10] Zhu Ying-Tao, Yang Chuan-Lu, Wang Mei-Shan, Dong Yong-Mian. First-principles calculations on the electrical structures and vibration frequencies of β-Si3N4. Acta Physica Sinica, 2008, 57(2): 1048-1053. doi: 10.7498/aps.57.1048
    [11] Lu Zhen-Ping, Han Kui, Li Hai-Peng, Zhang Wen-Tao, Huang Zhi-Min, Shen Xiao-Peng, Zhang Zhao-Hui, Bai Lei. Theoretical study of molecular vibrational hyperpolarizability of 4-N-methylstilbazonium salt derivatives. Acta Physica Sinica, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [12] Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [13] Su Yan, Wang Chuan-Kui, Wang Yan-Hua, Tao Li-Min. The influence of symmetries of the substituted donor and acceptor on two-photon absorption cross sections of trans-stilbene derivatives. Acta Physica Sinica, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [14] Chen Hong-Yi, Guo Hong-Lian, Ni Pei-Gen, Zhang Qi, Cheng Bing-Ying, Zhang Dao-Zhong. The abnormal transmittance of polystyrene photonic crystals. Acta Physica Sinica, 2003, 52(9): 2155-2158. doi: 10.7498/aps.52.2155
    [15] ZHANG ZHONG-MING, XIONG YE. CALCULATION OF FRANCK CONDON FACTORS FOR- THE TWO BAND SYSTEMS A1Π→X1Σ+ AND b3Σ+→a3Π OF BF. Acta Physica Sinica, 1997, 46(11): 2124-2129. doi: 10.7498/aps.46.2124
    [16] PENG JIN-SHENG. FLUORESENCE SPECTRUM AND TWO-PHOTON PROCESSES OF A THREE-LEVEL ATOM INTERACTING WITH TWO MONOCHROMATIC LASER. Acta Physica Sinica, 1985, 34(3): 408-413. doi: 10.7498/aps.34.408
    [17] . Acta Physica Sinica, 1963, 19(12): 830-832. doi: 10.7498/aps.19.830
    [18] . Acta Physica Sinica, 1962, 18(4): 221-223. doi: 10.7498/aps.18.221
    [19] 苯乙烯和聚苯乙烯的联合散射光谱研究. Acta Physica Sinica, 1961, 17(12): 617-620. doi: 10.7498/aps.17.617
    [20] Zhang zhi-san, Tang fu-hai. The Study Of Vibrational Frequency Of C = 0 Bond Of Benzoic Acid. Acta Physica Sinica, 1956, 12(2): 182-184. doi: 10.7498/aps.12.182
Metrics
  • Abstract views:  3719
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2023
  • Accepted Date:  05 May 2023
  • Available Online:  06 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回