Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-color resonance enhanced two-photon ionization and mass analyzed threshold ionization spectroscopy of p-chlorobenzonitrile

Zhao Yan Li Na Dang Si-Yuan Yang Guo-Quan Li Chang-Yong

Citation:

Two-color resonance enhanced two-photon ionization and mass analyzed threshold ionization spectroscopy of p-chlorobenzonitrile

Zhao Yan, Li Na, Dang Si-Yuan, Yang Guo-Quan, Li Chang-Yong
PDF
HTML
Get Citation
  • The vibrational features of p-chlorobenzonitrile in its first electronically excited state S1 and cationic ground state D0 have been investigated by two-color resonance enhanced two-photon ionization and mass analyzed threshold ionization spectroscopy. The excitation energy of S1 ← S0 and the ionization energy of 35Cl and 37Cl isotopomers of p-chlorobenzonitrile are determined to be 35818 ± 2, and 76846 ± 5 cm–1, respectively. These two isotopomers have similar vibrational features. Most of the active vibrations in the S1 and D0 states are related to the motions of the in-plane ring deformation. The stable structures and vibrational frequencies of p-chlorobenzonitrile are also calculated by the B3LYP/aug-cc-pVDZ method for the S0 and D0 states, and TD-B3LYP/aug-cc-pVDZ method for the S1 state. The changes in the molecular geometry are discussed in the S1 ← S0 photoexcitation process and the D0 ← S1 photoionization process. The comparisons between the transition energy of p-chlorophenol, p-chloroaniline, p-chloroanisole, and p-chlorobenzonitrile with those of phenol, anisole, aniline, and benzonitrile provide an insight into the substitution effect of Cl atom.
      Corresponding author: Zhao Yan, zhaoy@jzxy.edu.cn ; Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the Key Program of the National Natural Science Foundation of China (Grant No. 61835007), the National Natural Science Foundation of China (Grants Nos. 11904215, 61575115), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70), the 111 Project (Grant No. D18001), the Shanxi Provincial Higher Education Science and Technology Innovation Program, China (Grants Nos. 2020L0582, 2020L0599), the Shanxi Provincial Research Foundation for Basic Research, China (Grant No. 20210302124542), the Scientific Research Starting Foundation for Doctor, China (Grant No. 2019012), and the Fund for Shanxi ‘‘1331 Project” Key Subjects Construction, China.
    [1]

    Lee J K, Fujiwara T, Kofron W G, Zgierski M Z, Lim E C 2008 J. Chem. Phys. 128 164512Google Scholar

    [2]

    Perveaux A, Castro P J, Lauvergnat D, Reguero M, Lasorne B 2015 J. Phys. Chem. Lett. 6 1316Google Scholar

    [3]

    Livingstone R A, Thompson J O, Iljina M, Donaldson R J, Sussman B J, Paterson M J, Townsend D 2012 J. Chem. Phys. 137 184304Google Scholar

    [4]

    King G A, Devine A L, Nix M G, Kelly D E, Ashfold M N 2008 Phys. Chem. Chem. Phys. 10 6417Google Scholar

    [5]

    Miyazaki M, Sakata Y, Schutz M, Dopfer O, Fujii M 2016 Phys. Chem. Chem. Phys. 18 24746Google Scholar

    [6]

    Aschaffenburg D J, Moog R S 2009 J. Phys. Chem. B 113 12736Google Scholar

    [7]

    Chang C, Lu Y, Wang T, Diau E W 2004 J. Am. Chem. Soc. 126 10109Google Scholar

    [8]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897Google Scholar

    [9]

    Schneider M, Wilke M, Hebestreit M L, Ruiz-Santoyo J A, Alvarez-Valtierra L, Yi J T, Meerts W L, Pratt D W, Schmitt M 2017 Phys. Chem. Chem. Phys. 19 21364Google Scholar

    [10]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [11]

    Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [12]

    Corrales M E, Shternin P S, Rubio L L, De N R, Vasyutinskii O S, Bañares L 2016 J. Phys. Chem. Lett. 7 4458Google Scholar

    [13]

    Tzeng S Y, Shivatare V S, Tzeng W B 2019 J. Phys. Chem. A 123 5969Google Scholar

    [14]

    Findley A M, Bernstorff S, Köhler A M, Saile V, Findley G L 1987 Phys. Scr. 35 633Google Scholar

    [15]

    Onda M, Saegusa N, Yamaguchi I 1986 J. Mol. Struct. 145 185Google Scholar

    [16]

    Rocha I M, Galvão T L, Ribeiro da Silva M D, Ribeiro da Silva M A 2014 J. Phys. Chem. A 118 1502Google Scholar

    [17]

    Trivedi M K, Branton A, Trivedi D, Nayak G, Singh R, Jana S 2015 J. Chem. Sci. 3 84Google Scholar

    [18]

    Zhao Y, Jin Y H, Hao J Y, Yang Y G, Wang L R, Li C Y, Jia S T 2019 Spectrochim. Acta, Part A 207 328Google Scholar

    [19]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Wallingford CT: Gaussian Inc.)

    [21]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683Google Scholar

    [22]

    Maiti A K, Sarkar S K, Kastha G S 1985 Proc. Indian Acad. Sci. (Chem. Sci.) 95 409Google Scholar

    [23]

    Lin J L, Tzeng W B 2000 J. Chem. Phys. 113 4109Google Scholar

    [24]

    Huang J H, Huang K L, Liu S Q, Luo Q, Tzeng W B 2008 J. Photochem. Photobiol. , A 193 245Google Scholar

    [25]

    Lin J L, Li C Y, Tzeng W B 2004 J. Chem. Phys. 120 10513Google Scholar

    [26]

    Yu D, Dong C W, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H 2011 J. Mol. Spectrosc. 265 86Google Scholar

    [27]

    Wilson E B 1934 Phys. Rev. 45 706Google Scholar

    [28]

    Varsanyi G 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) pp185–190

    [29]

    Tzeng S Y, Takahashi K, Tzeng W B 2019 Chem. Phys. Lett. 731 136626Google Scholar

    [30]

    Huang J, Lin J L, Tzeng W B 2006 Chem. Phys. Lett. 422 271Google Scholar

    [31]

    Desiraju G R, Harlow R L 1989 J. Am. Chem. Soc. 111 6757Google Scholar

    [32]

    Zhao Y, Jin Y H, Hao J Y, Yang Y, Li C Y, Jia S T 2018 Chem. Phys. Lett. 711 127Google Scholar

    [33]

    Dopfer O, Müller-Dethlefs K 1994 J. Chem. Phys. 101 8508Google Scholar

    [34]

    Pradhan M, Li C Y, Lin J L, Tzeng W B 2005 Chem. Phys. Lett. 407 100Google Scholar

    [35]

    Lin J L, Tzeng W B 2001 J. Chem. Phys. 115 743Google Scholar

    [36]

    Araki M, Sato S, Kimura K 1996 J. Phys. Chem. 100 10542Google Scholar

    [37]

    Suzuki K, Ishiuchi S, Sakai M, Fujii M 2005 J. Electron Spectrosc. Relat. Phenom. 142 215Google Scholar

    [38]

    Huang L C, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar

    [39]

    Zhang B, Li C, Su H, Lin J L, Tzeng W B 2004 Chem. Phys. Lett. 390 65Google Scholar

  • 图 1  对氯苯腈分子的飞行时间质谱图

    Figure 1.  TOF mass spectrum of p-chlorobenzonitrile.

    图 2  对氯苯腈分子35Cl同位素(a)和37Cl 同位素(b)的2C-R2PI光谱, 横坐标是相对$ 0_0^0 $带能量的偏移值

    Figure 2.  2C-R2PI spectra of the 35Cl (a) and 37Cl (b) isotopomers of p-chlorobenzonitrile. The spectrum is shifted by 35818 cm-1 (the origin of the S1 ← S0 transition).

    图 3  经过对氯苯腈分子35Cl同位素中间态S100 (a)和37Cl 同位素中间态S100 (b)的MATI光谱, 横坐标是相对对氯苯腈分子电离能的偏移值

    Figure 3.  MATI spectra of the 35Cl (a) and 37Cl (b) isotopomers of p-chlorobenzonitrile via the S100 intermediate state

    图 4  经过对氯苯腈分子35Cl同位素中间态S16b1 (a) 和37Cl 同位素中间态S16b1 (b) 的MATI光谱, 横坐标是相对对氯苯腈分子电离能的偏移值

    Figure 4.  MATI spectra of the 35Cl (a) and 37Cl (b) isotopomers of p-chlorobenzonitrile via the S16b1 intermediate state.

    表 1  对氯苯腈分子35Cl和37Cl 同位素激发态S1的振动频率及光谱归属(单位: cm–1)

    Table 1.  The measured vibrational frequencies and assignments for the S1 state of 35Cl and 37Cl isotopomers of p-chlorobenzonitrile (unit: cm–1).

    35Cl37Cl光谱归属b
    实验值a理论值a实验值a理论值a
    00$ 0_0^0 $
    139141139141$ 15_0^1 $, β(C—CN)
    292291292291$ 9{\text{b}}_0^1 $, β(C—Cl)
    310300309300$ 7{\text{a}}_0^1 $, β(CCC),
    ν (C—Cl)
    457454457454$ 16{\text{b}}_0^1 $, γ(CCC)
    504495504495$ 6{\text{b}}_0^1 $, β(CCC)
    552567552567$ 12_0^1 $, β(CCC)
    592597590597β(C—CN)
    739747739746$ 6{\text{a}}_0^1 $, β(CCC)
    816818$ 6{\text{b}}_0^17{\text{a}}_0^1 $
    859859$ 12_0^17{\text{a}}_0^1 $
    867867$ 6{\text{a}}_0^115_0^1 $
    962970962970$ 18{\text{a}}_0^1 $, β(CH)
    10021002$ 6{\text{b}}_0^2 $
    10541054$ 6{\text{a}}_0^17{\text{a}}_0^1 $
    1067105510661055$ 1_0^1 $, breathing
    1149114711491147$ 9{\text{a}}_0^1 $, β(CH)
    1176118711761187$ 13_0^1 $, ν(C—CN)
    a 实验值是相对于对氯苯腈分子激发能(35818 cm–1)的偏移, 理论值是TD-B3LYP/aug-cc-pVDZ方法计算的振动频率(校正因子0.984)
    b ν, 伸缩振动; β, 苯环平面内的弯曲振动; γ, 垂直于苯环平面的弯曲振动
    DownLoad: CSV

    表 2  对氯苯腈分子35Cl和37Cl 同位素离子基态D0的振动频率及光谱归属a(单位: cm–1)

    Table 2.  The measured vibrational frequencies and assignments in the MATI spectra for the D0 state of 35Cl and 37Cl isotopomers of p-chlorobenzonitrilea (unit: cm–1).

    35Cl37Cl光谱归属b
    S1中间态理论值aS1中间态理论值a
    S100S16b1S100S16b1
    0
    3463473433447a1, β(CCC) , ν (C—Cl)
    5175285145296b1, β(CCC)
    5875846b1111
    601598121, β(CCC)
    6916936816877a2
    71973171573441, γ(C—CN)
    7787727787756a1, β(CCC)
    8608576b17a1
    9479477a1121
    10326b2
    10351040103110317a3
    10637a141
    111010931116109611, breathing
    1127111811186b1121
    120511916b17a2
    1223122312271228131, ν(C—CN)
    12366b141
    129212926b16a1
    138813908b1, ν(CC)
    154915456b17a3
    15721577156915707a1131
    16081614161216218a1, ν(CC)
    164116316b111
    a实验值是相对于对氯苯腈分子电离能(76846 cm–1)的偏移, 理论值是B3LYP/aug-cc-pVDZ方法计算的振动频率(校正因子0.981)
    b ν, 伸缩振动; β, 苯环平面内的弯曲振动; γ, 垂直于苯环平面的弯曲振动
    DownLoad: CSV

    表 3  对氯苯腈分子在电子基态、激发态和离子基态的基本结构参数

    Table 3.  Geometrical parameters of p-chlorobenzonitrile in its electronic ground, first excited and cationic ground states.

    结构
    参数
    Exp.aS0bS1cD0bΔ(S1-S0)Δ(D0-S1)
    键长/Å
    C1-C21.3971.4061.4321.4330.0260.008
    C2-C31.3841.3931.4291.3730.036–0.056
    C3-C41.3871.3971.4181.4290.0210.011
    C4-C51.3801.3971.4181.4290.0210.011
    C5-C61.3821.3931.4291.3730.036–0.056
    C6-C11.3861.4061.4321.4330.0260.001
    C4-Cl71.7451.7551.7331.695–0.022–0.038
    C1-C81.4541.4361.4141.413–0.023–0.001
    C8-N91.1101.1631.1711.1700.008–0.001
    键角/°
    C1C2C3119.1120.2119.5119.6–0.70.1
    C2C3C4119.4119.2118.7118.9–0.50.2
    C3C4C5121.7121.4122.7121.91.3–0.8
    C4C5C6118.8119.2118.7118.9–0.50.2
    C5C6C1120.2120.2119.5119.6–0.70.1
    C6C1C2120.6119.8120.8121.01.00.2
    a对氯苯腈分子的晶体结构参数[31]
    bB3LYP/aug-cc-pVDZ方法理论计算的结构参数
    cTD-B3LYP/aug-cc-pVDZ方法理论计算的结构参数
    DownLoad: CSV

    表 4  苯酚、苯甲醚、苯胺、苯腈及其衍生物分子的跃迁能(单位: cm–1) a

    Table 4.  The transition energies (cm–1) of phenol, anisole, aniline, benzonitrile and their derivatives.a

    MoleculeE1(S1 ← S0)ΔE1E2(D0 ← S1)ΔE2IEΔIE
    苯酚[33]36, 349032, 276068, 6250
    对氯苯酚[30]34, 813–153733, 291101568, 104–521
    苯甲醚[34]36, 383030, 016066, 3990
    对氯苯甲醚[29]34, 859–152431, 253123766, 112–287
    苯胺[35]34, 029028, 242062, 2710
    对氯苯胺[23]32, 573–145629, 837159362, 410139
    苯腈[36]36, 518041, 972078, 4900
    对氯苯腈35, 818–70041, 028–94476, 846–1644
    对甲基苯腈[37]36, 222–29638, 933–303975, 155–2845
    对氨基苯腈[38]33, 481–303733, 012–896066, 493–11997
    aΔE1, ΔE2, 和ΔIE 是衍生物分子E1, E2跃迁能和IE电离能相对苯酚、苯甲醚、苯胺、苯腈E1, E2, IE能量的差值
    DownLoad: CSV
  • [1]

    Lee J K, Fujiwara T, Kofron W G, Zgierski M Z, Lim E C 2008 J. Chem. Phys. 128 164512Google Scholar

    [2]

    Perveaux A, Castro P J, Lauvergnat D, Reguero M, Lasorne B 2015 J. Phys. Chem. Lett. 6 1316Google Scholar

    [3]

    Livingstone R A, Thompson J O, Iljina M, Donaldson R J, Sussman B J, Paterson M J, Townsend D 2012 J. Chem. Phys. 137 184304Google Scholar

    [4]

    King G A, Devine A L, Nix M G, Kelly D E, Ashfold M N 2008 Phys. Chem. Chem. Phys. 10 6417Google Scholar

    [5]

    Miyazaki M, Sakata Y, Schutz M, Dopfer O, Fujii M 2016 Phys. Chem. Chem. Phys. 18 24746Google Scholar

    [6]

    Aschaffenburg D J, Moog R S 2009 J. Phys. Chem. B 113 12736Google Scholar

    [7]

    Chang C, Lu Y, Wang T, Diau E W 2004 J. Am. Chem. Soc. 126 10109Google Scholar

    [8]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897Google Scholar

    [9]

    Schneider M, Wilke M, Hebestreit M L, Ruiz-Santoyo J A, Alvarez-Valtierra L, Yi J T, Meerts W L, Pratt D W, Schmitt M 2017 Phys. Chem. Chem. Phys. 19 21364Google Scholar

    [10]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [11]

    Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [12]

    Corrales M E, Shternin P S, Rubio L L, De N R, Vasyutinskii O S, Bañares L 2016 J. Phys. Chem. Lett. 7 4458Google Scholar

    [13]

    Tzeng S Y, Shivatare V S, Tzeng W B 2019 J. Phys. Chem. A 123 5969Google Scholar

    [14]

    Findley A M, Bernstorff S, Köhler A M, Saile V, Findley G L 1987 Phys. Scr. 35 633Google Scholar

    [15]

    Onda M, Saegusa N, Yamaguchi I 1986 J. Mol. Struct. 145 185Google Scholar

    [16]

    Rocha I M, Galvão T L, Ribeiro da Silva M D, Ribeiro da Silva M A 2014 J. Phys. Chem. A 118 1502Google Scholar

    [17]

    Trivedi M K, Branton A, Trivedi D, Nayak G, Singh R, Jana S 2015 J. Chem. Sci. 3 84Google Scholar

    [18]

    Zhao Y, Jin Y H, Hao J Y, Yang Y G, Wang L R, Li C Y, Jia S T 2019 Spectrochim. Acta, Part A 207 328Google Scholar

    [19]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Wallingford CT: Gaussian Inc.)

    [21]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683Google Scholar

    [22]

    Maiti A K, Sarkar S K, Kastha G S 1985 Proc. Indian Acad. Sci. (Chem. Sci.) 95 409Google Scholar

    [23]

    Lin J L, Tzeng W B 2000 J. Chem. Phys. 113 4109Google Scholar

    [24]

    Huang J H, Huang K L, Liu S Q, Luo Q, Tzeng W B 2008 J. Photochem. Photobiol. , A 193 245Google Scholar

    [25]

    Lin J L, Li C Y, Tzeng W B 2004 J. Chem. Phys. 120 10513Google Scholar

    [26]

    Yu D, Dong C W, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H 2011 J. Mol. Spectrosc. 265 86Google Scholar

    [27]

    Wilson E B 1934 Phys. Rev. 45 706Google Scholar

    [28]

    Varsanyi G 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) pp185–190

    [29]

    Tzeng S Y, Takahashi K, Tzeng W B 2019 Chem. Phys. Lett. 731 136626Google Scholar

    [30]

    Huang J, Lin J L, Tzeng W B 2006 Chem. Phys. Lett. 422 271Google Scholar

    [31]

    Desiraju G R, Harlow R L 1989 J. Am. Chem. Soc. 111 6757Google Scholar

    [32]

    Zhao Y, Jin Y H, Hao J Y, Yang Y, Li C Y, Jia S T 2018 Chem. Phys. Lett. 711 127Google Scholar

    [33]

    Dopfer O, Müller-Dethlefs K 1994 J. Chem. Phys. 101 8508Google Scholar

    [34]

    Pradhan M, Li C Y, Lin J L, Tzeng W B 2005 Chem. Phys. Lett. 407 100Google Scholar

    [35]

    Lin J L, Tzeng W B 2001 J. Chem. Phys. 115 743Google Scholar

    [36]

    Araki M, Sato S, Kimura K 1996 J. Phys. Chem. 100 10542Google Scholar

    [37]

    Suzuki K, Ishiuchi S, Sakai M, Fujii M 2005 J. Electron Spectrosc. Relat. Phenom. 142 215Google Scholar

    [38]

    Huang L C, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar

    [39]

    Zhang B, Li C, Su H, Lin J L, Tzeng W B 2004 Chem. Phys. Lett. 390 65Google Scholar

  • [1] Wang Xin-Yu, Wang Yi-Lin, Shi Qian-Han, Wang Qing-Long, Yu Hong-Yang, Jin Yuan-Yuan, Li Song. Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [2] Li Na, Li Shu-Xian, Wang Lin, Wang Hui-Hui, Yang Yong-Gang, Zhao Jian-Ming, Li Chang-Yong. Two-color resonance enhanced multiphoton ionization spectroscopy of o-hydroxybenzonitrile and Franck-Condon simulation. Acta Physica Sinica, 2022, 71(2): 023301. doi: 10.7498/aps.71.20211659
    [3] Theoretical study of the potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211441
    [4] Ma Kun, Chen Zhan-Bin, Huang Shi-Zhong. Influence of plasma shielding effect on ground state and excited state energies of Ar16+. Acta Physica Sinica, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
    [5] Zhang Ji-Cai, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue. Spectroscopic properties and analytical potential energy function of ground and low-lying excited states of BeC moleule. Acta Physica Sinica, 2019, 68(5): 053102. doi: 10.7498/aps.68.20181695
    [6] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [7] Zhou Rui, Li Chuan-Liang, He Xiao-Hu, Qiu Xuan-Bing, Meng Hui-Yan, Li Ya-Chao, Lai Yun-Zhong, Wei Ji-Lin, Deng Lun-Hua. Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab initio calculation. Acta Physica Sinica, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [8] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [9] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [10] Chen Heng-Jie. Potential energy curves and vibrational levels of ground and excited states of LiAl. Acta Physica Sinica, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [11] Guo Yu-Wei, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Investigation on the potential energy curves and spectroscopic properties of the low-lying excited states of BP. Acta Physica Sinica, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [12] Zhu Zun-Lue, Lang Jian-Hua, Qiao Hao. Study on spectroscopic properties and molecular constants of the ground and excited states of AsCl free-radical. Acta Physica Sinica, 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [13] Yu Kun, Zhang Xiao-Mei, Liu Yu-Fang. Ab initio calculation on the potential energy curves and spectroscopic properties of the low-lying excited states of BCl. Acta Physica Sinica, 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [14] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [15] Wang Xin-Qiang, Yang Chuan-Lu, Su Tao, Wang Mei-Shan. Analytical potential energy functions and spectroscopic properties of the ground and excited states of BH molecule. Acta Physica Sinica, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [16] Ma Jin-Long, Xu Kai-Jun, Li Zhe, Jin Biao-Bing, Fu Rong, Zhang Cai-Hong, Ji Zheng-Ming, Zhang Cang, Chen Zhao-Xu, Chen Jian, Wu Pei-Heng. Temperature-dependent terahertz spectroscopy of D-, L- and DL-ornidazole. Acta Physica Sinica, 2009, 58(9): 6101-6107. doi: 10.7498/aps.58.6101
    [17] Wei Qun, Yang Zi-Yuan, Wang Can-Jun, Xu Qi-Ming. Effects of excited states for d3 ions on spin-Hamiltonian parameters of the ground state 4A2 in axial-symmetrical crystal field. Acta Physica Sinica, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [18] Xu Can, Cao Juan, Gao Chen-Yang. Calculation of structure and properties of one-dimensional silica nanomaterials based on first-principle. Acta Physica Sinica, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [19] LIU DE-SHENG, ZHAO JUN-QING, WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. GROUND STATE, POLARON AND BIPOLARON EXCITATIONS AND THEIR STABILITY IN PPV. Acta Physica Sinica, 1999, 48(7): 1327-1333. doi: 10.7498/aps.48.1327
    [20] XIE SHI-JIE, MEI LIANG-MO, SUN XIN. GROUND STATE AND POLARON AND BIPOLARON EXCITATIONS IN POLY (P-PHENYLENE). Acta Physica Sinica, 1989, 38(9): 1506-1509. doi: 10.7498/aps.38.1506
Metrics
  • Abstract views:  4661
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2022
  • Accepted Date:  28 January 2022
  • Available Online:  15 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回