Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Beam splitting characteristics of crystal X-ray Laue diffraction

Zhao Chang-Zhe Si Shang-Yu Zhang Hai-Peng Xue Lian Li Zhong-Liang Xiao Ti-Qiao

Citation:

Beam splitting characteristics of crystal X-ray Laue diffraction

Zhao Chang-Zhe, Si Shang-Yu, Zhang Hai-Peng, Xue Lian, Li Zhong-Liang, Xiao Ti-Qiao
PDF
HTML
Get Citation
  • The beam splitter is an optical element that divides a beam of light into two or more subbeams. It is an essential component in many optical experiments. X-ray has the characteristics of short wavelength and strong penetration ability, making it hard to use the optical elements in the visible-light region. Therefore, it is necessary to develop optical elements suitable for X-rays. The atomic layer spacing of the perfect crystal is of the same order of magnitude as the X-ray wavelength, so the crystal diffraction effect can be used to achieve the X-ray modulation. In this paper, the beam splitting characteristics of Laue crystal are analyzed based on X-ray diffraction dynamics and the influences of crystal absorption and incident light angular divergence on the rocking curves of transmission and diffraction are simulated. The modulation of the crystal diffraction in-plane angle and crystal thickness to Laue diffraction beam-splitting ratio is presented quantitatively. The results show that the kinematical theory of X-ray diffraction is not enough to analyze the beam splitting characteristics of the crystal. It is necessary to consider the interaction between the wave fields in the crystal and use the Pendellӧsung effect in the dynamical theory of X-ray diffraction to explain the change of the crystal beam-splitting ratio quantitatively. The influence of angular divergence and crystal absorption are considered in the simulation. The angular divergence broadens the bandwidth of the diffraction, thereby reducing diffraction intensity. The crystal absorption results in asymmetry and peak shift of the transmission curve and affects the intensity of diffraction and the intensity of transmission beam. The experimental results show that the non-dispersive (+n, –n) configuration can effectively eliminate the influence of angle divergence. The beam-splitting ratio can be adjusted in a small range (±2%) by changing the in-plane angle and adjusted in a wide range (±75%) by changing the crystal thickness, thereby realizing the quantitative modulation of the intensity of transmission and diffraction beam.
      Corresponding author: Si Shang-Yu, sishangyu@zjlab.org.cn ; Xiao Ti-Qiao, xiaotiqiao@zjlab.org.cn
    • Funds: Project supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018297) and the National Key R&D Program of China (Grant Nos. 2017YFA0206004, 2017YFA0403801)
    [1]

    张克从 1998 近代晶体学基础(下册)(北京: 科学出版社) 第2−7页

    Zhang K C 1998 Fundamentals of Modern Crystallography (Vol. 2) (Beijing: Science Press) pp2−7 (in Chinese)

    [2]

    徐朝银 2013 同步辐射光学与工程(合肥: 中国科学技术大学出版社) 第181−254页

    Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp181−254 (in Chinese)

    [3]

    Xu H J, Zhao Z T 2008 Nucl. Sci. Tech 19 1Google Scholar

    [4]

    邰仁忠 2021 物理 50 501Google Scholar

    Tai R Z 2021 Physics 50 501Google Scholar

    [5]

    Pelliccia D, Olbinado M P, Rack A, Kingston A M, Myers G R, Paganin D M 2018 IUCrJ 5 428Google Scholar

    [6]

    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R, Paganin D M 2018 Optica 5 1516Google Scholar

    [7]

    Villanueva-Perez P, Pedrini B, Mokso R, Vagovic P, Guzenko V A, Leake S J, Willmott P R, Oberta P, David C, Chapman H N, Stampanoni M 2018 Optica 5 1521Google Scholar

    [8]

    Schmidt K E, Spence J C H, Weierstall U, Kirian R, Wang X, Starodub D, Chapman H N, Howells M R, Doak R B 2008 Phys. Rev. Lett. 101 115507Google Scholar

    [9]

    Batterman B W, Cole H 1964 Rev. Modern Phys. 36 681Google Scholar

    [10]

    Bonse U, Hart M 1965 Appl. Phys. Lett. 6 155Google Scholar

    [11]

    Pelliccia D, Rack A, Scheel M, Cantelli V, Paganin D M 2016 Phys. Rev. Lett. 117 113902Google Scholar

    [12]

    Schori A, Shwartz S 2017 Opt. Express 25 14822Google Scholar

    [13]

    von Laue M, 1931 Ergeb. Exakt. Naturwiss 10 133

    [14]

    Kato N, 1960 Acta Crystallography 13 349Google Scholar

    [15]

    Hirsch P B, 1952 Acta Crystallography 5 176Google Scholar

    [16]

    麦振洪 2020 X射线衍射动力学: 理论与应用(北京: 科学出版社) 第10−49页

    Mai Z H 2020 X-ray Diffraction Dynamics: Theory and Applications (Beijing: Science Press) pp10−49 (in Chinese)

    [17]

    Zhao Z T, Xu H J 2004 Proceedings of European Particle Accelerator Conference Lucerne, Switzerland, June 5–9, 2004 p2368

    [18]

    杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威 2020 物理学报 69 104101Google Scholar

    Yang J L, Li Z L, Li T, Zhu Y, Song L, Xue L, Zhang X W 2020 Acta Phys. Sin. 69 104101Google Scholar

    [19]

    Río M, Dejus R J 2011 Proc. Spie. 8141 259

    [20]

    Zachariasen, W. H 1967 Phys. Rev. Lett. 18 195Google Scholar

    [21]

    del Rio M S, Perez-Bocanegra N, Shi X B, Honkimaki V, Zhang L 2015 J. Appl. Crystallogr. 48 477Google Scholar

    [22]

    Li Z L, Fan Y C, Xue L, Zhang Z Y, Wang J 2019 2019 AIP Conference Proceedings 2054 Taiwan, China, June 10−15, 2019 p060040

    [23]

    Penning P, Polder D 1961 Philips Res. Rep. 16 419

  • 图 1  透射率与反射率随偏移角$\Delta \theta $的变化曲线(1 arcsec = 1/3600 degrees)

    Figure 1.  Transmittance and reflectance curve with offset angle $\Delta \theta $(1 arcsec = 1/3600 degrees).

    图 2  XOP模拟出的不同厚度Si单晶的摇摆曲线 Si单晶厚度分别为300 μm (a), 300.5 μm (b), 301 μm (c)的衍射和透射强度分布曲线, 没有经过强度平均的处理

    Figure 2.  The rocking curves of Si crystal with different thicknesses simulated by XOP: Diffraction and transmission intensity distribution curves of Si crystal with thickness of 300 μm (a), 300.5 μm (b), 301 μm (c), without intensity averaging.

    图 3  XOP模拟出的不同厚度Si单晶的摇摆曲线 (a)—(c)Si单晶厚度分别为300 μm, 400 μm和500 μm的衍射和透射强度分布曲线, 经过2.6″角度窗口强度平均的处理; (d)—(f)与(a)—(b)对应, 为无吸收情况下的衍射和透射强度分布曲线, 经过2.6″角度窗口强度平均的处理

    Figure 3.  The rocking curves of Si crystal with different thicknesses simulated by XOP. (a)–(c) Diffraction and transmission intensity distribution curves of Si crystal with thickness of 300 μm, 400 μm and 500 μm, under 2.6″ angle window intensity averaging; (d)–(f) correspond to (a)–(c), which are the diffraction and transmission intensity distribution curves without absorption, which are processed by 2.6" angle window intensity averaging.

    图 4  (a)完美晶体衍射的DuMond图; (b)消色散(+n, –n)配置条件下, 分束晶体扫描分析晶体出射光的DuMond图; (c)色散(+n, +n)配置条件下, 分束晶体扫描分析晶体出射光的DuMond图. 斜线区域是分析晶体的DuMond窗口, 散点区域是分束晶体的DuMond窗口

    Figure 4.  (a) DuMond diagram for perfect crystal diffraction; (b) DuMond diagrams during scanning the output beam of the analyzer by beam splitter with the non-dispersive (+n, –n) configuration; (c) DuMond diagrams during scanning the output beam of the analyzer by beam splitter with the dispersive (+n, +n) configuration. The oblique line region is the DuMond window of the analyzer and the point region is the DuMond window of the beam splitter.

    图 5  分析晶体和分束晶体的消色散实验光路图

    Figure 5.  Experimental configuration of dispersive consists of analyzer and beam splitter.

    图 6  晶体厚度为300 μm且$\varphi = - {3^ \circ }$时的透射曲线与衍射曲线

    Figure 6.  Transmission and diffraction curves when the crystal thickness is 300 μm and $\varphi = - {3^ \circ }$.

    图 7  不同φ角下的透射曲线和衍射曲线

    Figure 7.  Transmission and diffraction curves at different φ.

    图 8  (a)不同φ角下的强度分束比, 红线是数值拟合曲线; (b)不同φ角下的布拉格峰位置; (c)不同φ角下的摇摆曲线的峰值半高宽(FWHM), 其中红色虚线为晶体本征达尔文宽度

    Figure 8.  (a) Intensity splitting ratio (transmission intensity/diffraction intensity) at different φ, the red line is the linear fitting curve; (b) the peak positions of the diffraction curve at different φ; (c) the full width at half maximum (FWHM) of the rocking curve at different φ, where the red dashed line is the intrinsic Darwin Width of the crystal.

    图 9  不同晶体厚度条件下的透射曲线和衍射曲线

    Figure 9.  Transmission curve and diffraction curve with different crystal thickness.

    表 1  不同晶体厚度条件下得到的分束比、摇摆曲线半高宽测量值

    Table 1.  Beam splitting ratio, rocking curve FWHM measurement value obtained with different crystal thickness.

    晶体厚度/
    μm
    分束比(T/D)摇摆曲线半高宽
    测量值/arcsec
    本征达尔文带宽/
    arcsec
    3001.903.762.60
    4001.152.96
    5001.403.89
    DownLoad: CSV
  • [1]

    张克从 1998 近代晶体学基础(下册)(北京: 科学出版社) 第2−7页

    Zhang K C 1998 Fundamentals of Modern Crystallography (Vol. 2) (Beijing: Science Press) pp2−7 (in Chinese)

    [2]

    徐朝银 2013 同步辐射光学与工程(合肥: 中国科学技术大学出版社) 第181−254页

    Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp181−254 (in Chinese)

    [3]

    Xu H J, Zhao Z T 2008 Nucl. Sci. Tech 19 1Google Scholar

    [4]

    邰仁忠 2021 物理 50 501Google Scholar

    Tai R Z 2021 Physics 50 501Google Scholar

    [5]

    Pelliccia D, Olbinado M P, Rack A, Kingston A M, Myers G R, Paganin D M 2018 IUCrJ 5 428Google Scholar

    [6]

    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R, Paganin D M 2018 Optica 5 1516Google Scholar

    [7]

    Villanueva-Perez P, Pedrini B, Mokso R, Vagovic P, Guzenko V A, Leake S J, Willmott P R, Oberta P, David C, Chapman H N, Stampanoni M 2018 Optica 5 1521Google Scholar

    [8]

    Schmidt K E, Spence J C H, Weierstall U, Kirian R, Wang X, Starodub D, Chapman H N, Howells M R, Doak R B 2008 Phys. Rev. Lett. 101 115507Google Scholar

    [9]

    Batterman B W, Cole H 1964 Rev. Modern Phys. 36 681Google Scholar

    [10]

    Bonse U, Hart M 1965 Appl. Phys. Lett. 6 155Google Scholar

    [11]

    Pelliccia D, Rack A, Scheel M, Cantelli V, Paganin D M 2016 Phys. Rev. Lett. 117 113902Google Scholar

    [12]

    Schori A, Shwartz S 2017 Opt. Express 25 14822Google Scholar

    [13]

    von Laue M, 1931 Ergeb. Exakt. Naturwiss 10 133

    [14]

    Kato N, 1960 Acta Crystallography 13 349Google Scholar

    [15]

    Hirsch P B, 1952 Acta Crystallography 5 176Google Scholar

    [16]

    麦振洪 2020 X射线衍射动力学: 理论与应用(北京: 科学出版社) 第10−49页

    Mai Z H 2020 X-ray Diffraction Dynamics: Theory and Applications (Beijing: Science Press) pp10−49 (in Chinese)

    [17]

    Zhao Z T, Xu H J 2004 Proceedings of European Particle Accelerator Conference Lucerne, Switzerland, June 5–9, 2004 p2368

    [18]

    杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威 2020 物理学报 69 104101Google Scholar

    Yang J L, Li Z L, Li T, Zhu Y, Song L, Xue L, Zhang X W 2020 Acta Phys. Sin. 69 104101Google Scholar

    [19]

    Río M, Dejus R J 2011 Proc. Spie. 8141 259

    [20]

    Zachariasen, W. H 1967 Phys. Rev. Lett. 18 195Google Scholar

    [21]

    del Rio M S, Perez-Bocanegra N, Shi X B, Honkimaki V, Zhang L 2015 J. Appl. Crystallogr. 48 477Google Scholar

    [22]

    Li Z L, Fan Y C, Xue L, Zhang Z Y, Wang J 2019 2019 AIP Conference Proceedings 2054 Taiwan, China, June 10−15, 2019 p060040

    [23]

    Penning P, Polder D 1961 Philips Res. Rep. 16 419

  • [1] Beam splitting characteristics of crystal X-ray Laue diffraction. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211674
    [2] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [3] Yang Jun-Liang, Li Zhong-Liang, Li Tang, Zhu Ye, Song Li, Xue Lian, Zhang Xiao-Wei. Characteristics of multi-crystals monfiguration X-ray diffraction and application in characterizing synchrotron beamline bandwidth. Acta Physica Sinica, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [4] Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li. Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4. Acta Physica Sinica, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [5] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [6] Wen Zhi-Wen, Qi Hui-Rong, Dai Hong-Liang, Zhang Yu-Lian, Zhang Jian, Wei Kun, Ouyang Qun, Shao Jian-Xiong. Modified method for diffraction aberration of one-dimensional wire chamber. Acta Physica Sinica, 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [7] Qi Jun-Cheng, Ye Lin-Lin, Chen Rong-Chang, Xie Hong-Lan, Ren Yu-Qi, Du Guo-Hao, Deng Biao, Xiao Ti-Qiao. Coherence of X-ray in the third synchrotron radiation source. Acta Physica Sinica, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [8] Yan Fen, Zhang Ji-Chao, Li Ai-Guo, Yang Ke, Wang Hua, Mao Cheng-Wen, Liang Dong-Xu, Yan Shuai, Li Jiong, Yu Xiao-Han. Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta Physica Sinica, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [9] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [10] Le Zi-Chun, Zhang Ming, Dong Wen, Quan Bi-Sheng, Liu Wei, Liu Kai. Study on the focusing performance of the compound X-ray refractive lenses with fabrication errors. Acta Physica Sinica, 2010, 59(9): 6284-6289. doi: 10.7498/aps.59.6284
    [11] Chen Can, Du Guo-Hao, Xiao Ti-Qiao, Guo Rong-Yi, Ren Yu-Qi, Xie Hong-Lan, Deng Biao, Xu Hong-Jie, Wu Li-Hong, Xue Yan-Ling. Investigation of characteristic microstructures of wild ginseng by X-ray phase contrast microscopy. Acta Physica Sinica, 2010, 59(8): 5496-5507. doi: 10.7498/aps.59.5496
    [12] Le Zi-Chun, Dong Wen, Liu Wei, Zhang Ming, Liang Jing-Qiu, Quan Bi-Sheng, Liu Kai, Liang Zhong-Zhu, Zhu Pei-Ping, Yi Fu-Ting, Huang Wan-Xia. Theoretical and experimental results of focusing performance for the parabolic compound X-ray refractive lenses. Acta Physica Sinica, 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [13] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [14] Wang Min, Hu Xiao-Fang. Research on diffraction enhanced imaging computed tomography technique. Acta Physica Sinica, 2007, 56(8): 4989-4993. doi: 10.7498/aps.56.4989
    [15] Shu Hang, Zhu Pei-Ping, Wang Jun-Yue, Gao Xin, Yin Hong-Xia, Liu Bo, Yuan Qing-Xi, Huang Wan-Xia, Luo Shu-Qian, Gao Xiu-Lai, Wu Zi-Yu, Fang Shou-Xian. Diffraction enhanced imaging computer tomography. Acta Physica Sinica, 2006, 55(3): 1099-1106. doi: 10.7498/aps.55.1099
    [16] Zhu Pei-Ping, Yuan Qing-Xi, Huang Wan-Xia, Wang Jun-Yue, Shu Hang, Wu Zi-Yu, Xian Ding-Chang. Principles of X-ray diffraction enhanced imaging. Acta Physica Sinica, 2006, 55(3): 1089-1098. doi: 10.7498/aps.55.1089
    [17] Huang Wan-Xia, Zhu Pei-Ping, Yuan Qing-Xi, Wang Jun-Yue, Shu Hang, Hu Tian-Dou, Wu Zi-Yu. Comparison between two geometrical arrangements for diffraction enhanced imaging. Acta Physica Sinica, 2006, 55(10): 5178-5185. doi: 10.7498/aps.55.5178
    [18] Yi Rong-Qing, Yang Guo-Hong, Cui Yan-Li, Du Hua-Bing, Wei Min-Xi, Dong Jian-Jun, Zhao Yi-Dong, Cui Ming-Qi, Zheng Lei. Study of X-ray detector system characteristics on the 3B3 medium energy beamline in BSRF. Acta Physica Sinica, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [19] Zhu Pei-Ping, Wang Jun-Yue, Yuan Qing-Xi, Tian Yu-Lian, Huang Wan-Xia, Li Gang, Hu Tian-Dou, Jiang Xiao-Ming, Wu Zi-Yu. Study on the methods for diffraction-enhanced imaging with two crystals. Acta Physica Sinica, 2005, 54(1): 58-63. doi: 10.7498/aps.54.58
    [20] Huang Wan-Xia, Yuan Qing-Xi, Tian Yu-Lian, Zhu Pei-Ping, Jiang Xiao-Ming, Wang Jun-Yue. Diffraction-enhanced imaging experiments in BSRF. Acta Physica Sinica, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
Metrics
  • Abstract views:  5239
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2021
  • Accepted Date:  28 October 2021
  • Available Online:  16 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回