-
超快磁动力学是当代自旋电子学与磁性材料研究的前沿领域,涉及磁性体系中磁矩在飞秒至纳秒时间尺度内的响应与演化过程。为解析这些超快磁动力学行为,发展了多种时间分辨探测手段。基于同步辐射的 X 射线铁磁共振 (XFMR) 技术将微波激发的铁磁共振(FMR)与 X 射线磁圆二色(XMCD)技术相结合,能够在皮秒时间尺度上实现磁化进动的元素、价态及晶格占位分辨测量,获取进动磁矩的幅度与相位信息。本工作依托上海同步辐射光源(SSRF)BL07U 矢量磁铁实验站,自主设计并搭建了一套具备皮秒级时间分辨精度的 XFMR 实验平台。系统采用锁相放大调制与储存环主时钟精密同步的泵浦探测技术,可在高达 6 GHz 的频率范围内稳定激发并探测磁性元素的自旋进动,系统本底噪声被有效抑制至 30 fA 量级,整体相位时间分辨精度优于10 ps。标志着国内在同步辐射 XFMR 技术上已具备国际先进的时间分辨能力与灵敏度水平,为后续开展自旋流和轨道流探测及亚铁磁和反铁磁动力学等领域的研究奠定了重要实验基础。Ultrafast magnetization dynamics represents a forefront area in modern spintronics and magnetic materials research, addressing the response and evolution of magnetic moments in magnetic systems over femtosecond to nanosecond timescales. To elucidate such ultrafast magnetic processes, a variety of time-resolved experimental techniques have been developed. Among them, synchrotron-based X-ray ferromagnetic resonance (XFMR) combines microwave-driven ferromagnetic resonance (FMR) with X-ray magnetic circular dichroism (XMCD) detection, enabling element-, valence-, and lattice space- resolved measurements of magnetization precession on the picosecond timescale and providing direct access to both the amplitude and phase of the dynamic magnetic moment. This work developed a picosecond time-resolved XFMR platform at the BL07U vector magnet beamline of the Shanghai Synchrotron Radiation Facility (SSRF). The system employs a lock-in modulation detection scheme precisely synchronized with the storage-ring master clock, realizing stable excitation and detection of spin precession in magnetic materials up to 6 GHz, with the background noise effectively suppressed to 30 fA, and an overall phase time resolution better than 10 ps. The successful implementation of this technique establishes a state-of-the-art XFMR capability in China, achieving internationally competitive performance in both temporal resolution and detection sensitivity. This development provides a powerful experimental foundation for future investigations of spin current and orbital current detection, as well as ferrimagnetic and antiferromagnetic dynamics.
-
Keywords:
- Ultrafast magnetism dynamics /
- Synchrotron radiation /
- X-ray ferromagnetic resonance /
- Phase-time resolution
-
[1] Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731
[2] Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901
[3] Zhang W T, Maldonado P, Jin Z M, Seifert T S, Arabski J, Schmerber G, Beaurepaire E, Bonn M, Kampfrath T, Oppeneer P M, Turchinovich D 2020 Nat. Commun. 11 4247
[4] Koopmans B, Van Kampen M, Kohlhepp J T, De Jonge W J M 2000 Phys. Rev. Lett. 85 844
[5] Acremann Y, Strachan J P, Chembrolu V, Andrews S D, Tyliszczak T, Katine J A, Carey M J, Clemens B M, Siegmann H C, Stöhr J 2006 Phys. Rev. Lett. 96 217202
[6] Kittel C 1948 Phys. Rev. 73 155
[7] Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. B 66 224403
[8] Wang H L, Du C H, Pu Y, Adur R, Hammel P C, Yang F Y 2013 Phys. Rev. B 88 100406[R]
[9] Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601
[10] Hoffmann A 2013 IEEE Trans. Magn. 49 5172
[11] Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240
[12] Tanksalvala M, Kos A, Wisser J, Diddams S, Nembach H T, Shaw J M 2024 Phys. Rev. Appl. 21 064047
[13] Marcham M K, Shelford L R, Cavill S A, Keatley P S, Yu W, Shafer P, Neudert A, Childress J R, Katine J A, Arenholz E, Telling N D, Laan G van der, Hicken R J 2013 Phys. Rev. B 87 180403[R]
[14] Klewe C, Li Q, Yang M M, N’Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Hwang C, Li J, Hicken R J, Shafer P, Arenholz E, Laan G van der, Qiu Z Q 2020 Synchrotron Radiat. News 33 12
[15] Bailey W E, Cheng L, Keavney D J, Kao C C, Vescovo E, Arena D A 2004 Phys. Rev. B 70 172403
[16] Boero G, Rusponi S, Bencok P, Popovic R S, Brune H, Gambardella P 2005 Appl. Phys. Lett. 87 152503
[17] Goulon J, Rogalev A, Wilhelm F, Jaouen N, Goulon Ginet C, Goujon G, Ben Youssef J, Indenbom M V 2005 J. Exp. Theor. Phys. 82 696
[18] Arena D A, Vescovo E, Kao C C, Guan Y, Bailey W E 2006 Phys. Rev. B 74 064409
[19] Baker A A, Figueroa A I, Collins McIntyre L J, Laan G van der, Hesjedal T 2015 Sci. Rep. 5 7907
[20] Baker A A, Figueroa A I, Love C J, Cavill S A, Hesjedal T, Laan G van der 2016 Phys. Rev. Lett. 116 047201
[21] Dąbrowski M, Nakano T, Burn D M, Frisk A, Newman D G, Klewe C, Li Q, Yang M M, Shafer P, Arenholz E, Hesjedal T, Laan G van der, Qiu Z Q, Hicken R J 2020 Phys. Rev. Lett. 124 217201
[22] Burn D M, Zhang S L, Yu G Q, Guang Y, Chen H J, Qiu X P, Laan G van der, Hesjedal T 2020 Phys. Rev. Lett. 125 137201
[23] Burn D M, Zhang S L, Zhai K, Chai Y S, Sun Y, Laan G van der, Hesjedal T 2019 Nano Lett. 20 345
[24] Li J, Shelford L R, Shafer P, Tan A, Deng J X, Keatley P S, Hwang C, Arenholz E, Laan G van der, Hicken R J, Qiu Z Q 2016 Phys. Rev. Lett. 117 076602
[25] Li Q, Yang M M, Klewe C, Shafer P, N’Diaye A T, Hou D, Wang T Y, Gao N, Saitoh E, Hwang C, Hicken R J, Li J, Arenholz E, Qiu Z Q 2019 Nat. Commun. 10 5265
[26] Kim C, Choi W C, Moon K W, Kim H J, An K, Park B G, Kim H y, Hong J i, Kim J, Qiu Z Q, Kim Y, Hwang C 2023 J. Appl. Phys. 133 173906
[27] Yang X, Cao J F, Li J Q, Zhu F Y, Yu R, He J, Zhao Z L, Wang Y, Tai R Z 2022 Nucl. Sci. Tech. 33 63
[28] Tai R Z, Zhao Z T 2024 Nucl. Sci. Tech. 35 137
[29] Zhu F Y, Cao J F, Meng X Y, Li J Q, Yu R, Wang Y M, Qiao S, Zhao B, Zhang M Z, Liu Z K, Wang M X, Wang Y, Tai R Z 2024 Nucl. Sci. Tech. 35 130
[30] Laan G van der 2017 J. Electron Spectrosc. Relat. Phenom. 220 137
[31] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[32] Arena D A, Ding Y, Vescovo E, Zohar S, Guan Y, Bailey W E 2009 Rev. Sci. Instrum. 80 083903
[33] Sévelin Radiguet N, Torchio R, Berruyer G, Gonzalez H, Pasternak S, Perrin F, Occelli F, Pépin C, Sollier A, Kraus D, Schuster A, Voigt K, Zhang M, Amouretti A, Boury A, Fiquet G, Guyot F o, Harmand M, Borri M, Groves J, Helsby W, Branly S p, Norby J, Pascarelli S, Mathon O 2022 J. Synchrot. Radiat. 29 167
[34] Jo W, Lee S, Eom I, Landahl E C 2014 Rev. Sci. Instrum. 85 125112
[35] Kim C, An K, Moon K W, Kim Y, Hwang C 2025 Curr. Appl. Phys. 81 1
[36] Freeland J W, Lang J C, Srajer G, Winarski R, Shu D, Mills D M 2002 Rev. Sci. Instrum. 73 1408
[37] European Synchrotron Radiation Facility https://www.esrf.fr/ID32 [2025-11-01]
[38] The Advanced Light Source https://als.lbl.gov/beamlines/4-0-2/ [2025-10-28]
[39] Diamond Light Source https://www.diamond.ac.uk/Instruments/Magnetic-Materials/I10 [2025-10-25]
[40] Pohang Accelerator Laboratory https://paleng.postech.ac.kr/en/pls/plsbeamLineMap/beam2A/selectView.do [2025-11-20]
[41] Shanghai Advanced Research Institute https://ssrf.sari.ac.cn/dkxzz/tbfs/gsxz_gb/xzdl_tbfs/bl07u/xzjs/ [2025-11-10]
[42] The Advanced Photon Source https://www.aps.anl.gov/Sector-4/4-ID-C [2025-12-13]
[43] Boero G, Rusponi S, Bencok P, Meckenstock R, Thiele J U, Nolting F, Gambardella P 2009 Phys. Rev. B 79 224425
[44] Warnicke P, Stavitski E, Lee J S, Yang A, Chen Z, Zuo X, Zohar S, Bailey W E, Harris V G, Arena D A 2015 Phys. Rev. B 92 104402
[45] Li T Q, Patz A, Mouchliadis L, Yan J Q, Lograsso T A, Perakis I E, Wang J G 2013 Nature 496 69
[46] Klewe C, Emori S, Li Q, Yang M M, Gray B A, Jeon H M, Howe B M, Suzuki Y, Qiu Z Q, Shafer P, Arenholz E 2022 New J. Phys. 24 013030
[47] Hayashi H, Jo D, Go D, Gao T H, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32
[48] Ishii Y, Yamasaki Y, Kozuka Y, Lustikova J, Nii Y, Onose Y, Yokoyama Y, Mizumaki M, Adachi J-i, Nakao H, Arima T h, Wakabayashi Y 2024 Sci. Rep. 14 15504
[49] Tröger L, Arvanitis D, Baberschke K, Michaelis H, Grimm U, Zschech E 1992 Phys. Rev. B 46 3283
[50] Huang X B, Safranek J, Corbett J, Nosochkov Y, Sebek J, Terebilo A 2007 IEEE Particle Accelerator Conference Albuquerque,NM,USA Jun.25-29,2007 p1308
[51] Bonetti S, Kukreja R, Chen Z, Spoddig D, Ollefs K, Schöppner C, Meckenstock R, Ney A, Pinto J, Houanche R, Frisch J, Stöhr J, Dürr H A, Ohldag H 2015 Rev. Sci. Instrum. 86 093703
计量
- 文章访问数: 21
- PDF下载量: 0
- 被引次数: 0








下载: