搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同步辐射相位时间分辨X射线铁磁共振技术的发展

袁亚楠 王思宇 秦春宇 闫鹏辉 傅思远 王亚梅 曹杰峰 李倩

引用本文:
Citation:

基于同步辐射相位时间分辨X射线铁磁共振技术的发展

袁亚楠, 王思宇, 秦春宇, 闫鹏辉, 傅思远, 王亚梅, 曹杰峰, 李倩

Development of Phase-time-resolved X-ray ferromagnetic resonance techniques based on synchrotron radiation

YUAN Yanan, WANG Siyu, QIN Chunyu, YAN Penghui, FU Siyuan, WANG Yamei, CAO Jiefeng, LI Qian
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 超快磁动力学是当代自旋电子学与磁性材料研究的前沿领域,涉及磁性体系中磁矩在飞秒至纳秒时间尺度内的响应与演化过程。为解析这些超快磁动力学行为,发展了多种时间分辨探测手段。基于同步辐射的 X 射线铁磁共振 (XFMR) 技术将微波激发的铁磁共振(FMR)与 X 射线磁圆二色(XMCD)技术相结合,能够在皮秒时间尺度上实现磁化进动的元素、价态及晶格占位分辨测量,获取进动磁矩的幅度与相位信息。本工作依托上海同步辐射光源(SSRF)BL07U 矢量磁铁实验站,自主设计并搭建了一套具备皮秒级时间分辨精度的 XFMR 实验平台。系统采用锁相放大调制与储存环主时钟精密同步的泵浦探测技术,可在高达 6 GHz 的频率范围内稳定激发并探测磁性元素的自旋进动,系统本底噪声被有效抑制至 30 fA 量级,整体相位时间分辨精度优于10 ps。标志着国内在同步辐射 XFMR 技术上已具备国际先进的时间分辨能力与灵敏度水平,为后续开展自旋流和轨道流探测及亚铁磁和反铁磁动力学等领域的研究奠定了重要实验基础。
    Ultrafast magnetization dynamics represents a forefront area in modern spintronics and magnetic materials research, addressing the response and evolution of magnetic moments in magnetic systems over femtosecond to nanosecond timescales. To elucidate such ultrafast magnetic processes, a variety of time-resolved experimental techniques have been developed. Among them, synchrotron-based X-ray ferromagnetic resonance (XFMR) combines microwave-driven ferromagnetic resonance (FMR) with X-ray magnetic circular dichroism (XMCD) detection, enabling element-, valence-, and lattice space- resolved measurements of magnetization precession on the picosecond timescale and providing direct access to both the amplitude and phase of the dynamic magnetic moment. This work developed a picosecond time-resolved XFMR platform at the BL07U vector magnet beamline of the Shanghai Synchrotron Radiation Facility (SSRF). The system employs a lock-in modulation detection scheme precisely synchronized with the storage-ring master clock, realizing stable excitation and detection of spin precession in magnetic materials up to 6 GHz, with the background noise effectively suppressed to 30 fA, and an overall phase time resolution better than 10 ps. The successful implementation of this technique establishes a state-of-the-art XFMR capability in China, achieving internationally competitive performance in both temporal resolution and detection sensitivity. This development provides a powerful experimental foundation for future investigations of spin current and orbital current detection, as well as ferrimagnetic and antiferromagnetic dynamics.
  • [1]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731

    [2]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901

    [3]

    Zhang W T, Maldonado P, Jin Z M, Seifert T S, Arabski J, Schmerber G, Beaurepaire E, Bonn M, Kampfrath T, Oppeneer P M, Turchinovich D 2020 Nat. Commun. 11 4247

    [4]

    Koopmans B, Van Kampen M, Kohlhepp J T, De Jonge W J M 2000 Phys. Rev. Lett. 85 844

    [5]

    Acremann Y, Strachan J P, Chembrolu V, Andrews S D, Tyliszczak T, Katine J A, Carey M J, Clemens B M, Siegmann H C, Stöhr J 2006 Phys. Rev. Lett. 96 217202

    [6]

    Kittel C 1948 Phys. Rev. 73 155

    [7]

    Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. B 66 224403

    [8]

    Wang H L, Du C H, Pu Y, Adur R, Hammel P C, Yang F Y 2013 Phys. Rev. B 88 100406[R]

    [9]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601

    [10]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172

    [11]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240

    [12]

    Tanksalvala M, Kos A, Wisser J, Diddams S, Nembach H T, Shaw J M 2024 Phys. Rev. Appl. 21 064047

    [13]

    Marcham M K, Shelford L R, Cavill S A, Keatley P S, Yu W, Shafer P, Neudert A, Childress J R, Katine J A, Arenholz E, Telling N D, Laan G van der, Hicken R J 2013 Phys. Rev. B 87 180403[R]

    [14]

    Klewe C, Li Q, Yang M M, N’Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Hwang C, Li J, Hicken R J, Shafer P, Arenholz E, Laan G van der, Qiu Z Q 2020 Synchrotron Radiat. News 33 12

    [15]

    Bailey W E, Cheng L, Keavney D J, Kao C C, Vescovo E, Arena D A 2004 Phys. Rev. B 70 172403

    [16]

    Boero G, Rusponi S, Bencok P, Popovic R S, Brune H, Gambardella P 2005 Appl. Phys. Lett. 87 152503

    [17]

    Goulon J, Rogalev A, Wilhelm F, Jaouen N, Goulon Ginet C, Goujon G, Ben Youssef J, Indenbom M V 2005 J. Exp. Theor. Phys. 82 696

    [18]

    Arena D A, Vescovo E, Kao C C, Guan Y, Bailey W E 2006 Phys. Rev. B 74 064409

    [19]

    Baker A A, Figueroa A I, Collins McIntyre L J, Laan G van der, Hesjedal T 2015 Sci. Rep. 5 7907

    [20]

    Baker A A, Figueroa A I, Love C J, Cavill S A, Hesjedal T, Laan G van der 2016 Phys. Rev. Lett. 116 047201

    [21]

    Dąbrowski M, Nakano T, Burn D M, Frisk A, Newman D G, Klewe C, Li Q, Yang M M, Shafer P, Arenholz E, Hesjedal T, Laan G van der, Qiu Z Q, Hicken R J 2020 Phys. Rev. Lett. 124 217201

    [22]

    Burn D M, Zhang S L, Yu G Q, Guang Y, Chen H J, Qiu X P, Laan G van der, Hesjedal T 2020 Phys. Rev. Lett. 125 137201

    [23]

    Burn D M, Zhang S L, Zhai K, Chai Y S, Sun Y, Laan G van der, Hesjedal T 2019 Nano Lett. 20 345

    [24]

    Li J, Shelford L R, Shafer P, Tan A, Deng J X, Keatley P S, Hwang C, Arenholz E, Laan G van der, Hicken R J, Qiu Z Q 2016 Phys. Rev. Lett. 117 076602

    [25]

    Li Q, Yang M M, Klewe C, Shafer P, N’Diaye A T, Hou D, Wang T Y, Gao N, Saitoh E, Hwang C, Hicken R J, Li J, Arenholz E, Qiu Z Q 2019 Nat. Commun. 10 5265

    [26]

    Kim C, Choi W C, Moon K W, Kim H J, An K, Park B G, Kim H y, Hong J i, Kim J, Qiu Z Q, Kim Y, Hwang C 2023 J. Appl. Phys. 133 173906

    [27]

    Yang X, Cao J F, Li J Q, Zhu F Y, Yu R, He J, Zhao Z L, Wang Y, Tai R Z 2022 Nucl. Sci. Tech. 33 63

    [28]

    Tai R Z, Zhao Z T 2024 Nucl. Sci. Tech. 35 137

    [29]

    Zhu F Y, Cao J F, Meng X Y, Li J Q, Yu R, Wang Y M, Qiao S, Zhao B, Zhang M Z, Liu Z K, Wang M X, Wang Y, Tai R Z 2024 Nucl. Sci. Tech. 35 130

    [30]

    Laan G van der 2017 J. Electron Spectrosc. Relat. Phenom. 220 137

    [31]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443

    [32]

    Arena D A, Ding Y, Vescovo E, Zohar S, Guan Y, Bailey W E 2009 Rev. Sci. Instrum. 80 083903

    [33]

    Sévelin Radiguet N, Torchio R, Berruyer G, Gonzalez H, Pasternak S, Perrin F, Occelli F, Pépin C, Sollier A, Kraus D, Schuster A, Voigt K, Zhang M, Amouretti A, Boury A, Fiquet G, Guyot F o, Harmand M, Borri M, Groves J, Helsby W, Branly S p, Norby J, Pascarelli S, Mathon O 2022 J. Synchrot. Radiat. 29 167

    [34]

    Jo W, Lee S, Eom I, Landahl E C 2014 Rev. Sci. Instrum. 85 125112

    [35]

    Kim C, An K, Moon K W, Kim Y, Hwang C 2025 Curr. Appl. Phys. 81 1

    [36]

    Freeland J W, Lang J C, Srajer G, Winarski R, Shu D, Mills D M 2002 Rev. Sci. Instrum. 73 1408

    [37]

    European Synchrotron Radiation Facility https://www.esrf.fr/ID32 [2025-11-01]

    [38]

    The Advanced Light Source https://als.lbl.gov/beamlines/4-0-2/ [2025-10-28]

    [39]

    Diamond Light Source https://www.diamond.ac.uk/Instruments/Magnetic-Materials/I10 [2025-10-25]

    [40]

    Pohang Accelerator Laboratory https://paleng.postech.ac.kr/en/pls/plsbeamLineMap/beam2A/selectView.do [2025-11-20]

    [41]

    Shanghai Advanced Research Institute https://ssrf.sari.ac.cn/dkxzz/tbfs/gsxz_gb/xzdl_tbfs/bl07u/xzjs/ [2025-11-10]

    [42]

    The Advanced Photon Source https://www.aps.anl.gov/Sector-4/4-ID-C [2025-12-13]

    [43]

    Boero G, Rusponi S, Bencok P, Meckenstock R, Thiele J U, Nolting F, Gambardella P 2009 Phys. Rev. B 79 224425

    [44]

    Warnicke P, Stavitski E, Lee J S, Yang A, Chen Z, Zuo X, Zohar S, Bailey W E, Harris V G, Arena D A 2015 Phys. Rev. B 92 104402

    [45]

    Li T Q, Patz A, Mouchliadis L, Yan J Q, Lograsso T A, Perakis I E, Wang J G 2013 Nature 496 69

    [46]

    Klewe C, Emori S, Li Q, Yang M M, Gray B A, Jeon H M, Howe B M, Suzuki Y, Qiu Z Q, Shafer P, Arenholz E 2022 New J. Phys. 24 013030

    [47]

    Hayashi H, Jo D, Go D, Gao T H, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32

    [48]

    Ishii Y, Yamasaki Y, Kozuka Y, Lustikova J, Nii Y, Onose Y, Yokoyama Y, Mizumaki M, Adachi J-i, Nakao H, Arima T h, Wakabayashi Y 2024 Sci. Rep. 14 15504

    [49]

    Tröger L, Arvanitis D, Baberschke K, Michaelis H, Grimm U, Zschech E 1992 Phys. Rev. B 46 3283

    [50]

    Huang X B, Safranek J, Corbett J, Nosochkov Y, Sebek J, Terebilo A 2007 IEEE Particle Accelerator Conference Albuquerque,NM,USA Jun.25-29,2007 p1308

    [51]

    Bonetti S, Kukreja R, Chen Z, Spoddig D, Ollefs K, Schöppner C, Meckenstock R, Ney A, Pinto J, Houanche R, Frisch J, Stöhr J, Dürr H A, Ohldag H 2015 Rev. Sci. Instrum. 86 093703

  • [1] 芦闻天, 姚春伟, 严志, 袁喆. 激光诱导自旋阀结构的超快自旋动力学研究. 物理学报, doi: 10.7498/aps.74.20241744
    [2] 汪书兴, 李天钧, 黄新朝, 朱林繁. 内壳层体系的X射线腔量子光学. 物理学报, doi: 10.7498/aps.73.20241218
    [3] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, doi: 10.7498/aps.71.20211674
    [4] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, doi: 10.7498/aps.69.20191586
    [5] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, doi: 10.7498/aps.69.20200165
    [6] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构. 物理学报, doi: 10.7498/aps.68.20190494
    [7] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, doi: 10.7498/aps.64.197502
    [8] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, doi: 10.7498/aps.63.104202
    [9] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, doi: 10.7498/aps.60.090702
    [10] 乐孜纯, 张明, 董文, 全必胜, 刘魏, 刘恺. 制作工艺误差对X射线组合折射透镜聚焦性能影响研究. 物理学报, doi: 10.7498/aps.59.6284
    [11] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究. 物理学报, doi: 10.7498/aps.59.1977
    [12] 薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰. 利用X射线相衬显微研究野山参的特征结构. 物理学报, doi: 10.7498/aps.59.5496
    [13] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究. 物理学报, doi: 10.7498/aps.59.4535
    [14] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究. 物理学报, doi: 10.7498/aps.59.6940
    [15] 马丽, 朱志永, 李敏, 于世丹, 崔启良, 周强, 陈京兰, 吴光恒. 铁磁形状记忆合金Mn2NiGa中应力诱发马氏体相的结构和磁性. 物理学报, doi: 10.7498/aps.58.3479
    [16] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, doi: 10.7498/aps.55.6287
    [17] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, doi: 10.7498/aps.54.677
    [18] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定. 物理学报, doi: 10.7498/aps.53.1099
    [19] 谢红兰, 高鸿奕, 陈建文, 王寯越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展. 具有原子分辨率的x射线荧光全息术的数值模拟研究. 物理学报, doi: 10.7498/aps.52.2223
    [20] 郭红霞, 陈雨生, 张义门, 韩福斌, 贺朝会, 周辉. 浮栅ROM器件x射线剂量增强效应实验研究. 物理学报, doi: 10.7498/aps.51.2315
计量
  • 文章访问数:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-23

/

返回文章
返回