Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of Phase-time-resolved X-ray ferromagnetic resonance techniques based on synchrotron radiation

YUAN Yanan WANG Siyu QIN Chunyu YAN Penghui FU Siyuan WANG Yamei CAO Jiefeng LI Qian

Citation:

Development of Phase-time-resolved X-ray ferromagnetic resonance techniques based on synchrotron radiation

YUAN Yanan, WANG Siyu, QIN Chunyu, YAN Penghui, FU Siyuan, WANG Yamei, CAO Jiefeng, LI Qian
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Ultrafast magnetization dynamics represents a forefront area in modern spintronics and magnetic materials research, addressing the response and evolution of magnetic moments in magnetic systems over femtosecond to nanosecond timescales. To elucidate such ultrafast magnetic processes, a variety of time-resolved experimental techniques have been developed. Among them, synchrotron-based X-ray ferromagnetic resonance (XFMR) combines microwave-driven ferromagnetic resonance (FMR) with X-ray magnetic circular dichroism (XMCD) detection, enabling element-, valence-, and lattice space- resolved measurements of magnetization precession on the picosecond timescale and providing direct access to both the amplitude and phase of the dynamic magnetic moment. This work developed a picosecond time-resolved XFMR platform at the BL07U vector magnet beamline of the Shanghai Synchrotron Radiation Facility (SSRF). The system employs a lock-in modulation detection scheme precisely synchronized with the storage-ring master clock, realizing stable excitation and detection of spin precession in magnetic materials up to 6 GHz, with the background noise effectively suppressed to 30 fA, and an overall phase time resolution better than 10 ps. The successful implementation of this technique establishes a state-of-the-art XFMR capability in China, achieving internationally competitive performance in both temporal resolution and detection sensitivity. This development provides a powerful experimental foundation for future investigations of spin current and orbital current detection, as well as ferrimagnetic and antiferromagnetic dynamics.
  • [1]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731

    [2]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901

    [3]

    Zhang W T, Maldonado P, Jin Z M, Seifert T S, Arabski J, Schmerber G, Beaurepaire E, Bonn M, Kampfrath T, Oppeneer P M, Turchinovich D 2020 Nat. Commun. 11 4247

    [4]

    Koopmans B, Van Kampen M, Kohlhepp J T, De Jonge W J M 2000 Phys. Rev. Lett. 85 844

    [5]

    Acremann Y, Strachan J P, Chembrolu V, Andrews S D, Tyliszczak T, Katine J A, Carey M J, Clemens B M, Siegmann H C, Stöhr J 2006 Phys. Rev. Lett. 96 217202

    [6]

    Kittel C 1948 Phys. Rev. 73 155

    [7]

    Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. B 66 224403

    [8]

    Wang H L, Du C H, Pu Y, Adur R, Hammel P C, Yang F Y 2013 Phys. Rev. B 88 100406[R]

    [9]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601

    [10]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172

    [11]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240

    [12]

    Tanksalvala M, Kos A, Wisser J, Diddams S, Nembach H T, Shaw J M 2024 Phys. Rev. Appl. 21 064047

    [13]

    Marcham M K, Shelford L R, Cavill S A, Keatley P S, Yu W, Shafer P, Neudert A, Childress J R, Katine J A, Arenholz E, Telling N D, Laan G van der, Hicken R J 2013 Phys. Rev. B 87 180403[R]

    [14]

    Klewe C, Li Q, Yang M M, N’Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Hwang C, Li J, Hicken R J, Shafer P, Arenholz E, Laan G van der, Qiu Z Q 2020 Synchrotron Radiat. News 33 12

    [15]

    Bailey W E, Cheng L, Keavney D J, Kao C C, Vescovo E, Arena D A 2004 Phys. Rev. B 70 172403

    [16]

    Boero G, Rusponi S, Bencok P, Popovic R S, Brune H, Gambardella P 2005 Appl. Phys. Lett. 87 152503

    [17]

    Goulon J, Rogalev A, Wilhelm F, Jaouen N, Goulon Ginet C, Goujon G, Ben Youssef J, Indenbom M V 2005 J. Exp. Theor. Phys. 82 696

    [18]

    Arena D A, Vescovo E, Kao C C, Guan Y, Bailey W E 2006 Phys. Rev. B 74 064409

    [19]

    Baker A A, Figueroa A I, Collins McIntyre L J, Laan G van der, Hesjedal T 2015 Sci. Rep. 5 7907

    [20]

    Baker A A, Figueroa A I, Love C J, Cavill S A, Hesjedal T, Laan G van der 2016 Phys. Rev. Lett. 116 047201

    [21]

    Dąbrowski M, Nakano T, Burn D M, Frisk A, Newman D G, Klewe C, Li Q, Yang M M, Shafer P, Arenholz E, Hesjedal T, Laan G van der, Qiu Z Q, Hicken R J 2020 Phys. Rev. Lett. 124 217201

    [22]

    Burn D M, Zhang S L, Yu G Q, Guang Y, Chen H J, Qiu X P, Laan G van der, Hesjedal T 2020 Phys. Rev. Lett. 125 137201

    [23]

    Burn D M, Zhang S L, Zhai K, Chai Y S, Sun Y, Laan G van der, Hesjedal T 2019 Nano Lett. 20 345

    [24]

    Li J, Shelford L R, Shafer P, Tan A, Deng J X, Keatley P S, Hwang C, Arenholz E, Laan G van der, Hicken R J, Qiu Z Q 2016 Phys. Rev. Lett. 117 076602

    [25]

    Li Q, Yang M M, Klewe C, Shafer P, N’Diaye A T, Hou D, Wang T Y, Gao N, Saitoh E, Hwang C, Hicken R J, Li J, Arenholz E, Qiu Z Q 2019 Nat. Commun. 10 5265

    [26]

    Kim C, Choi W C, Moon K W, Kim H J, An K, Park B G, Kim H y, Hong J i, Kim J, Qiu Z Q, Kim Y, Hwang C 2023 J. Appl. Phys. 133 173906

    [27]

    Yang X, Cao J F, Li J Q, Zhu F Y, Yu R, He J, Zhao Z L, Wang Y, Tai R Z 2022 Nucl. Sci. Tech. 33 63

    [28]

    Tai R Z, Zhao Z T 2024 Nucl. Sci. Tech. 35 137

    [29]

    Zhu F Y, Cao J F, Meng X Y, Li J Q, Yu R, Wang Y M, Qiao S, Zhao B, Zhang M Z, Liu Z K, Wang M X, Wang Y, Tai R Z 2024 Nucl. Sci. Tech. 35 130

    [30]

    Laan G van der 2017 J. Electron Spectrosc. Relat. Phenom. 220 137

    [31]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443

    [32]

    Arena D A, Ding Y, Vescovo E, Zohar S, Guan Y, Bailey W E 2009 Rev. Sci. Instrum. 80 083903

    [33]

    Sévelin Radiguet N, Torchio R, Berruyer G, Gonzalez H, Pasternak S, Perrin F, Occelli F, Pépin C, Sollier A, Kraus D, Schuster A, Voigt K, Zhang M, Amouretti A, Boury A, Fiquet G, Guyot F o, Harmand M, Borri M, Groves J, Helsby W, Branly S p, Norby J, Pascarelli S, Mathon O 2022 J. Synchrot. Radiat. 29 167

    [34]

    Jo W, Lee S, Eom I, Landahl E C 2014 Rev. Sci. Instrum. 85 125112

    [35]

    Kim C, An K, Moon K W, Kim Y, Hwang C 2025 Curr. Appl. Phys. 81 1

    [36]

    Freeland J W, Lang J C, Srajer G, Winarski R, Shu D, Mills D M 2002 Rev. Sci. Instrum. 73 1408

    [37]

    European Synchrotron Radiation Facility https://www.esrf.fr/ID32 [2025-11-01]

    [38]

    The Advanced Light Source https://als.lbl.gov/beamlines/4-0-2/ [2025-10-28]

    [39]

    Diamond Light Source https://www.diamond.ac.uk/Instruments/Magnetic-Materials/I10 [2025-10-25]

    [40]

    Pohang Accelerator Laboratory https://paleng.postech.ac.kr/en/pls/plsbeamLineMap/beam2A/selectView.do [2025-11-20]

    [41]

    Shanghai Advanced Research Institute https://ssrf.sari.ac.cn/dkxzz/tbfs/gsxz_gb/xzdl_tbfs/bl07u/xzjs/ [2025-11-10]

    [42]

    The Advanced Photon Source https://www.aps.anl.gov/Sector-4/4-ID-C [2025-12-13]

    [43]

    Boero G, Rusponi S, Bencok P, Meckenstock R, Thiele J U, Nolting F, Gambardella P 2009 Phys. Rev. B 79 224425

    [44]

    Warnicke P, Stavitski E, Lee J S, Yang A, Chen Z, Zuo X, Zohar S, Bailey W E, Harris V G, Arena D A 2015 Phys. Rev. B 92 104402

    [45]

    Li T Q, Patz A, Mouchliadis L, Yan J Q, Lograsso T A, Perakis I E, Wang J G 2013 Nature 496 69

    [46]

    Klewe C, Emori S, Li Q, Yang M M, Gray B A, Jeon H M, Howe B M, Suzuki Y, Qiu Z Q, Shafer P, Arenholz E 2022 New J. Phys. 24 013030

    [47]

    Hayashi H, Jo D, Go D, Gao T H, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32

    [48]

    Ishii Y, Yamasaki Y, Kozuka Y, Lustikova J, Nii Y, Onose Y, Yokoyama Y, Mizumaki M, Adachi J-i, Nakao H, Arima T h, Wakabayashi Y 2024 Sci. Rep. 14 15504

    [49]

    Tröger L, Arvanitis D, Baberschke K, Michaelis H, Grimm U, Zschech E 1992 Phys. Rev. B 46 3283

    [50]

    Huang X B, Safranek J, Corbett J, Nosochkov Y, Sebek J, Terebilo A 2007 IEEE Particle Accelerator Conference Albuquerque,NM,USA Jun.25-29,2007 p1308

    [51]

    Bonetti S, Kukreja R, Chen Z, Spoddig D, Ollefs K, Schöppner C, Meckenstock R, Ney A, Pinto J, Houanche R, Frisch J, Stöhr J, Dürr H A, Ohldag H 2015 Rev. Sci. Instrum. 86 093703

  • [1] LU Wentian, YAO Chunwei, YAN Zhi, YUAN Zhe. Research on ultrafast spin dynamics of laser-induced spin valve structures. Acta Physica Sinica, doi: 10.7498/aps.74.20241744
    [2] Wang Shu-Xing, Li Tian-Jun, Huang Xin-Chao, Zhu Lin-Fan. X-ray cavity quantum optics of inner-shell transitions. Acta Physica Sinica, doi: 10.7498/aps.73.20241218
    [3] Zhao Chang-Zhe, Si Shang-Yu, Zhang Hai-Peng, Xue Lian, Li Zhong-Liang, Xiao Ti-Qiao. Beam splitting characteristics of crystal X-ray Laue diffraction. Acta Physica Sinica, doi: 10.7498/aps.71.20211674
    [4] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, doi: 10.7498/aps.69.20191586
    [5] Yang Jun-Liang, Li Zhong-Liang, Li Tang, Zhu Ye, Song Li, Xue Lian, Zhang Xiao-Wei. Characteristics of multi-crystals monfiguration X-ray diffraction and application in characterizing synchrotron beamline bandwidth. Acta Physica Sinica, doi: 10.7498/aps.69.20200165
    [6] Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li. Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4. Acta Physica Sinica, doi: 10.7498/aps.68.20190494
    [7] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, doi: 10.7498/aps.64.197502
    [8] Qi Jun-Cheng, Ye Lin-Lin, Chen Rong-Chang, Xie Hong-Lan, Ren Yu-Qi, Du Guo-Hao, Deng Biao, Xiao Ti-Qiao. Coherence of X-ray in the third synchrotron radiation source. Acta Physica Sinica, doi: 10.7498/aps.63.104202
    [9] Yan Fen, Zhang Ji-Chao, Li Ai-Guo, Yang Ke, Wang Hua, Mao Cheng-Wen, Liang Dong-Xu, Yan Shuai, Li Jiong, Yu Xiao-Han. Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta Physica Sinica, doi: 10.7498/aps.60.090702
    [10] Le Zi-Chun, Zhang Ming, Dong Wen, Quan Bi-Sheng, Liu Wei, Liu Kai. Study on the focusing performance of the compound X-ray refractive lenses with fabrication errors. Acta Physica Sinica, doi: 10.7498/aps.59.6284
    [11] Le Zi-Chun, Dong Wen, Liu Wei, Zhang Ming, Liang Jing-Qiu, Quan Bi-Sheng, Liu Kai, Liang Zhong-Zhu, Zhu Pei-Ping, Yi Fu-Ting, Huang Wan-Xia. Theoretical and experimental results of focusing performance for the parabolic compound X-ray refractive lenses. Acta Physica Sinica, doi: 10.7498/aps.59.1977
    [12] Chen Can, Du Guo-Hao, Xiao Ti-Qiao, Guo Rong-Yi, Ren Yu-Qi, Xie Hong-Lan, Deng Biao, Xu Hong-Jie, Wu Li-Hong, Xue Yan-Ling. Investigation of characteristic microstructures of wild ginseng by X-ray phase contrast microscopy. Acta Physica Sinica, doi: 10.7498/aps.59.5496
    [13] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, doi: 10.7498/aps.59.4535
    [14] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, doi: 10.7498/aps.59.6940
    [15] Ma Li, Zhu Zhi-Yong, Li Min, Yu Shi-Dan, Cui Qi-Liang, Zhou Qiang, Chen Jing-Lan, Wu Guang-Heng. Structure and magnetic properties of stress-induced martensites in ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, doi: 10.7498/aps.58.3479
    [16] Yi Rong-Qing, Yang Guo-Hong, Cui Yan-Li, Du Hua-Bing, Wei Min-Xi, Dong Jian-Jun, Zhao Yi-Dong, Cui Ming-Qi, Zheng Lei. Study of X-ray detector system characteristics on the 3B3 medium energy beamline in BSRF. Acta Physica Sinica, doi: 10.7498/aps.55.6287
    [17] Huang Wan-Xia, Yuan Qing-Xi, Tian Yu-Lian, Zhu Pei-Ping, Jiang Xiao-Ming, Wang Jun-Yue. Diffraction-enhanced imaging experiments in BSRF. Acta Physica Sinica, doi: 10.7498/aps.54.677
    [18] Sun Ke-Xu, Yi Rong-Qing, Yang Guo-Hong, Jiang Shao-En, Cui Yan-Li, Liu Shen-Ye, Ding Yong-Kun, Cui Ming-Qi, Zhu Pei-Ping, Zhao Yi-Dong, Zhu Jie, Zheng Lei, Zhang Jing-He. The reflectance calibration of soft x-ray planar mirror with different grazing angle. Acta Physica Sinica, doi: 10.7498/aps.53.1099
    [19] Xie Hong-Lan, Gao Hong-Yi, Chen Jian-Wen, Wang Jun-Yue, Zhu Pei-Ping, Xiong Shi-Sheng, Xian Ding-Chang, Xu Zhi-Zhan. Numerical simulation study for atomic-resolution x-ray fluorescence holography. Acta Physica Sinica, doi: 10.7498/aps.52.2223
    [20] Guo Hong-Xia, Chen Yu-Sheng, Zhang Yi-Men, Han Fu-Bin, He Chao-Hui, Zhou Hui. . Acta Physica Sinica, doi: 10.7498/aps.51.2315
Metrics
  • Abstract views:  12
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  23 December 2025
  • /

    返回文章
    返回