-
Ultrafast magnetization dynamics represents a forefront area in modern spintronics and magnetic materials research, addressing the response and evolution of magnetic moments in magnetic systems over femtosecond to nanosecond timescales. To elucidate such ultrafast magnetic processes, a variety of time-resolved experimental techniques have been developed. Among them, synchrotron-based X-ray ferromagnetic resonance (XFMR) combines microwave-driven ferromagnetic resonance (FMR) with X-ray magnetic circular dichroism (XMCD) detection, enabling element-, valence-, and lattice space- resolved measurements of magnetization precession on the picosecond timescale and providing direct access to both the amplitude and phase of the dynamic magnetic moment. This work developed a picosecond time-resolved XFMR platform at the BL07U vector magnet beamline of the Shanghai Synchrotron Radiation Facility (SSRF). The system employs a lock-in modulation detection scheme precisely synchronized with the storage-ring master clock, realizing stable excitation and detection of spin precession in magnetic materials up to 6 GHz, with the background noise effectively suppressed to 30 fA, and an overall phase time resolution better than 10 ps. The successful implementation of this technique establishes a state-of-the-art XFMR capability in China, achieving internationally competitive performance in both temporal resolution and detection sensitivity. This development provides a powerful experimental foundation for future investigations of spin current and orbital current detection, as well as ferrimagnetic and antiferromagnetic dynamics.
-
Keywords:
- Ultrafast magnetism dynamics /
- Synchrotron radiation /
- X-ray ferromagnetic resonance /
- Phase-time resolution
-
[1] Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731
[2] Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901
[3] Zhang W T, Maldonado P, Jin Z M, Seifert T S, Arabski J, Schmerber G, Beaurepaire E, Bonn M, Kampfrath T, Oppeneer P M, Turchinovich D 2020 Nat. Commun. 11 4247
[4] Koopmans B, Van Kampen M, Kohlhepp J T, De Jonge W J M 2000 Phys. Rev. Lett. 85 844
[5] Acremann Y, Strachan J P, Chembrolu V, Andrews S D, Tyliszczak T, Katine J A, Carey M J, Clemens B M, Siegmann H C, Stöhr J 2006 Phys. Rev. Lett. 96 217202
[6] Kittel C 1948 Phys. Rev. 73 155
[7] Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. B 66 224403
[8] Wang H L, Du C H, Pu Y, Adur R, Hammel P C, Yang F Y 2013 Phys. Rev. B 88 100406[R]
[9] Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601
[10] Hoffmann A 2013 IEEE Trans. Magn. 49 5172
[11] Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240
[12] Tanksalvala M, Kos A, Wisser J, Diddams S, Nembach H T, Shaw J M 2024 Phys. Rev. Appl. 21 064047
[13] Marcham M K, Shelford L R, Cavill S A, Keatley P S, Yu W, Shafer P, Neudert A, Childress J R, Katine J A, Arenholz E, Telling N D, Laan G van der, Hicken R J 2013 Phys. Rev. B 87 180403[R]
[14] Klewe C, Li Q, Yang M M, N’Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Hwang C, Li J, Hicken R J, Shafer P, Arenholz E, Laan G van der, Qiu Z Q 2020 Synchrotron Radiat. News 33 12
[15] Bailey W E, Cheng L, Keavney D J, Kao C C, Vescovo E, Arena D A 2004 Phys. Rev. B 70 172403
[16] Boero G, Rusponi S, Bencok P, Popovic R S, Brune H, Gambardella P 2005 Appl. Phys. Lett. 87 152503
[17] Goulon J, Rogalev A, Wilhelm F, Jaouen N, Goulon Ginet C, Goujon G, Ben Youssef J, Indenbom M V 2005 J. Exp. Theor. Phys. 82 696
[18] Arena D A, Vescovo E, Kao C C, Guan Y, Bailey W E 2006 Phys. Rev. B 74 064409
[19] Baker A A, Figueroa A I, Collins McIntyre L J, Laan G van der, Hesjedal T 2015 Sci. Rep. 5 7907
[20] Baker A A, Figueroa A I, Love C J, Cavill S A, Hesjedal T, Laan G van der 2016 Phys. Rev. Lett. 116 047201
[21] Dąbrowski M, Nakano T, Burn D M, Frisk A, Newman D G, Klewe C, Li Q, Yang M M, Shafer P, Arenholz E, Hesjedal T, Laan G van der, Qiu Z Q, Hicken R J 2020 Phys. Rev. Lett. 124 217201
[22] Burn D M, Zhang S L, Yu G Q, Guang Y, Chen H J, Qiu X P, Laan G van der, Hesjedal T 2020 Phys. Rev. Lett. 125 137201
[23] Burn D M, Zhang S L, Zhai K, Chai Y S, Sun Y, Laan G van der, Hesjedal T 2019 Nano Lett. 20 345
[24] Li J, Shelford L R, Shafer P, Tan A, Deng J X, Keatley P S, Hwang C, Arenholz E, Laan G van der, Hicken R J, Qiu Z Q 2016 Phys. Rev. Lett. 117 076602
[25] Li Q, Yang M M, Klewe C, Shafer P, N’Diaye A T, Hou D, Wang T Y, Gao N, Saitoh E, Hwang C, Hicken R J, Li J, Arenholz E, Qiu Z Q 2019 Nat. Commun. 10 5265
[26] Kim C, Choi W C, Moon K W, Kim H J, An K, Park B G, Kim H y, Hong J i, Kim J, Qiu Z Q, Kim Y, Hwang C 2023 J. Appl. Phys. 133 173906
[27] Yang X, Cao J F, Li J Q, Zhu F Y, Yu R, He J, Zhao Z L, Wang Y, Tai R Z 2022 Nucl. Sci. Tech. 33 63
[28] Tai R Z, Zhao Z T 2024 Nucl. Sci. Tech. 35 137
[29] Zhu F Y, Cao J F, Meng X Y, Li J Q, Yu R, Wang Y M, Qiao S, Zhao B, Zhang M Z, Liu Z K, Wang M X, Wang Y, Tai R Z 2024 Nucl. Sci. Tech. 35 130
[30] Laan G van der 2017 J. Electron Spectrosc. Relat. Phenom. 220 137
[31] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[32] Arena D A, Ding Y, Vescovo E, Zohar S, Guan Y, Bailey W E 2009 Rev. Sci. Instrum. 80 083903
[33] Sévelin Radiguet N, Torchio R, Berruyer G, Gonzalez H, Pasternak S, Perrin F, Occelli F, Pépin C, Sollier A, Kraus D, Schuster A, Voigt K, Zhang M, Amouretti A, Boury A, Fiquet G, Guyot F o, Harmand M, Borri M, Groves J, Helsby W, Branly S p, Norby J, Pascarelli S, Mathon O 2022 J. Synchrot. Radiat. 29 167
[34] Jo W, Lee S, Eom I, Landahl E C 2014 Rev. Sci. Instrum. 85 125112
[35] Kim C, An K, Moon K W, Kim Y, Hwang C 2025 Curr. Appl. Phys. 81 1
[36] Freeland J W, Lang J C, Srajer G, Winarski R, Shu D, Mills D M 2002 Rev. Sci. Instrum. 73 1408
[37] European Synchrotron Radiation Facility https://www.esrf.fr/ID32 [2025-11-01]
[38] The Advanced Light Source https://als.lbl.gov/beamlines/4-0-2/ [2025-10-28]
[39] Diamond Light Source https://www.diamond.ac.uk/Instruments/Magnetic-Materials/I10 [2025-10-25]
[40] Pohang Accelerator Laboratory https://paleng.postech.ac.kr/en/pls/plsbeamLineMap/beam2A/selectView.do [2025-11-20]
[41] Shanghai Advanced Research Institute https://ssrf.sari.ac.cn/dkxzz/tbfs/gsxz_gb/xzdl_tbfs/bl07u/xzjs/ [2025-11-10]
[42] The Advanced Photon Source https://www.aps.anl.gov/Sector-4/4-ID-C [2025-12-13]
[43] Boero G, Rusponi S, Bencok P, Meckenstock R, Thiele J U, Nolting F, Gambardella P 2009 Phys. Rev. B 79 224425
[44] Warnicke P, Stavitski E, Lee J S, Yang A, Chen Z, Zuo X, Zohar S, Bailey W E, Harris V G, Arena D A 2015 Phys. Rev. B 92 104402
[45] Li T Q, Patz A, Mouchliadis L, Yan J Q, Lograsso T A, Perakis I E, Wang J G 2013 Nature 496 69
[46] Klewe C, Emori S, Li Q, Yang M M, Gray B A, Jeon H M, Howe B M, Suzuki Y, Qiu Z Q, Shafer P, Arenholz E 2022 New J. Phys. 24 013030
[47] Hayashi H, Jo D, Go D, Gao T H, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32
[48] Ishii Y, Yamasaki Y, Kozuka Y, Lustikova J, Nii Y, Onose Y, Yokoyama Y, Mizumaki M, Adachi J-i, Nakao H, Arima T h, Wakabayashi Y 2024 Sci. Rep. 14 15504
[49] Tröger L, Arvanitis D, Baberschke K, Michaelis H, Grimm U, Zschech E 1992 Phys. Rev. B 46 3283
[50] Huang X B, Safranek J, Corbett J, Nosochkov Y, Sebek J, Terebilo A 2007 IEEE Particle Accelerator Conference Albuquerque,NM,USA Jun.25-29,2007 p1308
[51] Bonetti S, Kukreja R, Chen Z, Spoddig D, Ollefs K, Schöppner C, Meckenstock R, Ney A, Pinto J, Houanche R, Frisch J, Stöhr J, Dürr H A, Ohldag H 2015 Rev. Sci. Instrum. 86 093703
Metrics
- Abstract views: 12
- PDF Downloads: 0
- Cited By: 0









下载: