Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectroscopic and transition properties of LiCl anion

Guo Rui Tan Han Yuan Qin-Yue Zhang Qing Wan Ming-Jie

Citation:

Spectroscopic and transition properties of LiCl anion

Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie
PDF
HTML
Get Citation
  • The electronic structure of the X2Σ+, A2Π, B2Σ+, 32Σ+, and 22Π state of LiCl anion are performed at an MRCI+Q level. Davison correction, core-valence correction and spin-orbit coupling effect are also considered. The ground state X2Σ+ of LiCl anion correlates with the lowest dissociation channel Li(2Sg) + Cl(1Sg); the A2∏ state and B2Σ+ state correlate with the second dissociation channel Li(2Pu) + Cl(1Sg); the 32Σ+ state and 22Π state correlate with the third dissociation channel Li(1Sg) + Cl(2Pu).Spectroscopic parameters are calculated by solving the radial Schröedinger equation. The equilibrium internuclear distance Re of the ground state X2Σ+ is 2.1352 Å, which is a little bigger than the experimental datum, with an error being 0.5%. It is a deep potential well, and the dissociation energy De is 1.886 eV. These values are in good agreement with experimental data. The A2∏ state is at 13431.93 cm–1 above the X2Σ+ state. The Re is 2.1198 Å, which is only 0.0154 Å smaller than that of the X2Σ+ state. The values of energy level Gν and rotational constant Bν of five Λ-S states are also calculated. The values are in good agreement with available theoretical ones. The electronic structures of the excited states are also reported. The SOC effect weakly influences the spectroscopic parameters for the $ {\text{X}}{}^2\Sigma _{1/2}^ + $, $ {\text{A}}{}^2{\Pi _{1/2}} $, $ {\text{A}}{}^2{\Pi _{3/2}} $, and $ {\text{B}}{}^2\Sigma _{1/2}^ + $ state. From the analysis of the SO matrix, it can be seen that the SOC effect plays a little role in realizing the A2Π $\leftrightarrow $ X2Σ+ transition, so, it can be ignored.The scheme of laser cooling of LiCl anion has constructed at a spin – free level. The A2∏(ν) $\leftrightarrow $ X2Σ+($v'' $) transition has a highly diagonally distributed Franck-Condon factor f00 = 0.9898, the calculated branching ratio of the diagonal term R00 is 0.9893, and spontaneous radiative lifetime of A2∏ is 35.45 ns. A main pump laser and two repumping lasers for driving the A2∏(ν) $\leftrightarrow $ X2Σ+($v'' $) transitions are required. The laser wavelengths are 744.10, 774.30 and 772.42 nm, respectively. Owing to the summation of R00, R01, and R02 being closer to 1, the A2∏(ν) $\leftrightarrow $ X2Σ+($v'' $) transition is a quasicycling transition. These results imply that the LiCl anion is a candidate for laser cooling.
      Corresponding author: Wan Ming-Jie, wanmingjie1983@sina.com
    • Funds: Project supported by the National Undergraduate Training Program for Innovation, Entrepreneurship of Yibin University (Grant No. 202110641022) and the Pre-Research Project of Yibin University, China (Grant No. 2019YY06) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (Grant No. YBXYJSWL-ZD-2020-001)
    [1]

    Micheli A, Brennen G, Zoller P 2006 Nat. Phys. 2 341Google Scholar

    [2]

    Baron J et al., (The ACME Collaboration). 2014 Science 343 269Google Scholar

    [3]

    Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079Google Scholar

    [4]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [5]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [6]

    You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502Google Scholar

    [7]

    Wan M J, Shao J X, Huang D H, Jin C G, Yu Y, Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731Google Scholar

    [8]

    Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G, Wang F H 2015 J Chem. Phys. 143 024302Google Scholar

    [9]

    Yang Q S, Li S C, Yu Y, Gao T 2018 J. Phys. Chem. A 122 3021Google Scholar

    [10]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302Google Scholar

    [11]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309Google Scholar

    [12]

    Yuan X, Yin S, Shen Y, Liu Y, Lian Y, Xu H F, Yan B 2018 J. Chem. Phys. 149 094306Google Scholar

    [13]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001Google Scholar

    [14]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta, Part A. 182 130Google Scholar

    [15]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta, Part A. 185 365Google Scholar

    [16]

    Wan M J, Huang D H, Yu Y, Zhang Y G 2017 Phys. Chem. Chem. Phys. 17 27360

    [17]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [18]

    万明杰, 罗华锋, 袁娣, 李松 2019 物理学报 68 173102Google Scholar

    Wan M J, Luo H F, Yuan D, Li S 2019 Acta Phys. Sin. 68 173102Google Scholar

    [19]

    万明杰, 柳福提, 黄多辉 2021 物理学报 70 033101Google Scholar

    Wan M J, Liu F T, Huang D H, 2021 Acta Phys. Sin. 70 033101Google Scholar

    [20]

    Carlsten J L, Peterson J R. Lineberger W C 1976 Chem. Phys. Lett. 37 5Google Scholar

    [21]

    Miller T M, Leopold D G, Murray K K, Lineberger W C 1986 J. Chem. Phys. 85 2368Google Scholar

    [22]

    Jordan K D, Luken W 1976 J Chem. Phys. 64 2760Google Scholar

    [23]

    Li S, Zheng R, Chen S J, Fan Q C 2015 Mol. Phys. 113 1433Google Scholar

    [24]

    Weck P F, Kirby K, Stancil P C 2004 J. Chem. Phys. 120 4216Google Scholar

    [25]

    Kurosaki Y, Yokoyama K 2012 J. Chem. Phys. 137 064305Google Scholar

    [26]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (Version 2010.1)

    [27]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [28]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [29]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [30]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [31]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1283

    [32]

    Xiao K L, Yang C L, Wang M S, Ma X G, Liu W W 2013 J. Chem. Phys. 139 074305Google Scholar

    [33]

    Weigend F 2008 J. Comput. Chem. 29 167Google Scholar

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [35]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663)

    [36]

    Haeffler G, Hanstrorp D, Kiyan I, Klinkmueller A E, Ljungblad U, Pegg D 1996 Phys. Rev. A 53 4127Google Scholar

    [37]

    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmueller A E, Ljungblad U, Maartensson-Pendrill A M 1995 Phys. Rev. A 51 231Google Scholar

    [38]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: US Govt Printing Office) pp9, 195

    [39]

    尹俊豪, 杨涛, 印建平 2021 物理学报 70 163302Google Scholar

    Yin J H, Yang T, Yin J P 2021 Acta Phys. Sin. 70 163302Google Scholar

  • 图 1  X2Σ+, A2∏, B2Σ+, 32Σ+和22∏电子态的势能曲线

    Figure 1.  Potential energy curves of the X2Σ+, A2∏, B2Σ+, 32Σ+ and 22∏ states.

    图 2  Ω态的势能曲线

    Figure 2.  Potential energy curves of the Ω states.

    图 3  LiCl阴离子的自旋-轨道矩阵元. SOi的表示见表5

    Figure 3.  Spin-orbit matrix elements of the of the LiCl anion. The explanations of the SOi symbols are presented in Table 6.

    图 4  (a) Λ-S态的电偶极矩; (b) Λ-S态的跃迁偶极矩

    Figure 4.  (a) The permanent dipole moments of the Λ-states; (b) the transition dipole moments of the Λ-states.

    图 5  驱动A2$\leftrightarrow $ X2Σ+跃迁进行激光冷却的途径

    Figure 5.  Proposed laser cooling scheme via A2$\leftrightarrow $ X2Σ+ transition.

    表 1  LiCl阴离子Λ-S态的离解关系

    Table 1.  Calculated dissociation relationships of the Λ-S states of LiCl anion.

    ΔE/cm–1
    原子态分子态本文工作实验值[3638]
    Li(2Sg)+Cl(1Sg)X2Σ+00
    Li(2Pu)+ Cl(1Sg)A2Π, B2Σ+14903.7914253.13
    Li(1Sg)+Cl(2Pu)32Σ+, 22Π23703.6124594.67
    DownLoad: CSV

    表 2  LiCl阴离子Λ-S态的光谱常数

    Table 2.  Spectroscopic parameters of the Λ-S states of LiCl anion.

    电子态Reωe/cm–1ωeχe/cm–1Be/cm–1De/eVD0/eVTe/cm–1
    X2Σ+2.1352535.335.81730.72051.88861.8560
    实验值[20]2.18(4)0
    实验值[21]2.123(15)1.75(2)0
    理论值[22]2.12a0
    理论值[23]2.1354537.7b6.34b0.7203b1.810
    A22.1198554.655.71570.73101.99021.955913431.93
    B2Σ+2.0282652.796.12520.79851.66531.625017491.75
    32Σ+5.859430.190.84830.09630.03620.035338607.64
    227.141139.080.56160.06380.01360.011238855.32
    a采用HF方法计算得到基态的核间距.
    DownLoad: CSV

    表 3  X2Σ+, A2∏, B2Σ+, 32Σ+和22∏态的振动能级和转动常数

    Table 3.  Vibrational energy levels, rotational constants of the X2Σ+, A2∏, B2Σ+, 32Σ+ and 22∏ states.

    νX2Σ+ A2 B2Σ+ 32Σ+ 22
    Gν BνGνBνGνBνGνBνGνBν
    本文工作文献[23]本文工作文献[23]本文工作本文工作本文工作本文工作本文工作本文工作本文工作本文工作
    0266.72264.07 0.71460.7143 276.480.7252 325.330.7927 14.960.0940 6.120.0631
    1790.93791.770.70290.7023820.210.7136966.070.781143.020.089318.150.0618
    21303.271307.010.69110.69031352.130.70211594.230.769768.840.085728.920.0572
    31803.711809.920.67940.67841872.340.69072210.020.758493.220.082629.300.0095
    42292.312300.650.66770.66662380.970.67932813.560.7471116.240.079631.320.0112
    52769.152779.340.65600.65482878.130.66803404.890.7359138.170.076533.190.0125
    63234.293246.110.64440.64303363.870.65673984.090.7247158.980.072535.070.0140
    73687.833701.100.63280.63133838.290.64554551.200.7135178.260.067836.530.0310
    84129.884144.450.62120.61974301.420.63435106.170.7023195.600.062637.330.0257
    94560.614576.290.60970.60814753.370.62315648.950.6911210.770.057139.110.0188
    DownLoad: CSV

    表 4  LiCl阴离子Ω态的离解关系

    Table 4.  Calculated dissociation relationships of the Ω states of LiCl anion.

    ΔE/cm–1
    原子态分子态 Ω本文工作实验值[3638]
    Li(2S1/2)+Cl(1S0)1/200
    Li(2P1/2)+ Cl(1S0)1/214252.7714903.62
    Li(2P3/2)+ Cl(1S0)1/2, 3/214253.5014903.96
    Li(1S0)+Cl(2P3/2)1/2, 3/223415.4124153.49
    Li(1S0)+Cl(2P1/2)1/224288.4825035.84
    DownLoad: CSV

    表 5  LiCl阴离子Ω态的光谱常数

    Table 5.  Spectroscopic parameters of the Ω states of LiCl anion at icMRCI+Q level.

    Ω态Reωe/cm–1ωeχe /cm–1 Be/cm–1De/eVTe/cm–1
    $ {\text{X}}{}^2\Sigma _{1/2}^ + $2.1352535.325.81720.72051.88860
    $ {\text{A}}{}^2{\Pi _{1/2}} $2.1196554.875.71530.73112.009413419.77
    $ {\text{A}}{}^2{\Pi _{3/2}} $2.1200554.415.71600.73082.005913444.07
    $ {\text{B}}{}^2\Sigma _{1/2}^ + $2.0282652.796.12530.79851.667917491.75
    DownLoad: CSV

    表 6  LiCl阴离子的自旋-轨道矩阵元

    Table 6.  Notation of spin-orbit matrix element.

    SO矩阵元
    $ {\text{S}}{{\text{O}}_1} = - {\text{i}}\left\langle {{{\text{X}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $$ {\text{S}}{{\text{O}}_2} = \left\langle {{{\text{X}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _x}} \right\rangle $$ {\text{S}}{{\text{O}}_3} = - {\text{i}}\left\langle {{{\text{B}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $$ {\text{S}}{{\text{O}}_4} = \left\langle {{{\text{B}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _x}} \right\rangle $
    $ {\text{S}}{{\text{O}}_5} = - {\text{i}}\left\langle {{3^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $$ {\text{S}}{{\text{O}}_6} = \left\langle {{3^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _x}} \right\rangle $$ {\text{S}}{{\text{O}}_7} = - {\text{i}}\left\langle {{{\text{X}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _y}} \right\rangle $$ {\text{S}}{{\text{O}}_8} = \left\langle {{{\text{X}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _x}} \right\rangle $
    $ {\text{S}}{{\text{O}}_9} = - {\text{i}}\left\langle {{{\text{B}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _y}} \right\rangle $$ {\text{S}}{{\text{O}}_{10}} = \left\langle {{{\text{B}}^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _x}} \right\rangle $$ {\text{S}}{{\text{O}}_{11}} = - {\text{i}}\left\langle {{3^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _y}} \right\rangle $$ {\text{S}}{{\text{O}}_{12}} = \left\langle {{3^2}{\Sigma ^ + }} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _x}} \right\rangle $
    $ {\text{S}}{{\text{O}}_{13}} = {\text{i}}\left\langle {{{\text{A}}^2}{\Pi _x}} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $$ {\text{S}}{{\text{O}}_{14}} = {\text{i}}\left\langle {{2^2}{\Pi _x}} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _y}} \right\rangle $$ {\text{S}}{{\text{O}}_{15}} = {\text{i}}\left\langle {{2^2}{\Pi _y}} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{{\text{A}}^2}{\Pi _x}} \right\rangle $$ {\text{S}}{{\text{O}}_{16}} = {\text{i}}\left\langle {{2^2}{\Pi _x}} \right|\hat H_{{\text{SO}}}^{{\text{BP}}}\left| {{2^2}{\Pi _y}} \right\rangle $
    DownLoad: CSV

    表 7  A2$\leftrightarrow $ X2Σ+和B2Σ+ $\leftrightarrow $ X2Σ+跃迁的弗兰克-康登因子fν'ν'', 爱因斯坦系数Aν'ν''和自发辐射寿命 (单位: ns)

    Table 7.  Franck-Condon Factors fν'ν'', Einstein coefficients Aν'ν'', and radiative lifetimes τ of the A2$\leftrightarrow $ X2Σ+ and B2Σ+ $\leftrightarrow $ X2Σ+ transitions of LiCl anion(in ns).

    跃迁f00f01f02f03
    A00A01A02A03τ = 1/ΣA
    f10f11f12f13
    A10A11A12A13
    A2∏ $\leftrightarrow $ X2Σ+0.98980.01010.00018.70(–7)
    279042002983133848.8544.6035.45
    0.01020.96860.02090.0004
    269660273366006073351233235.43
    B2Σ+ $\leftrightarrow $ X2Σ+0.59080.29090.08940.0225
    183168007658290203873045221034.99
    0.32660.12860.28880.1671
    1227960042617807988480397939033.00
    DownLoad: CSV
  • [1]

    Micheli A, Brennen G, Zoller P 2006 Nat. Phys. 2 341Google Scholar

    [2]

    Baron J et al., (The ACME Collaboration). 2014 Science 343 269Google Scholar

    [3]

    Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079Google Scholar

    [4]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [5]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [6]

    You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502Google Scholar

    [7]

    Wan M J, Shao J X, Huang D H, Jin C G, Yu Y, Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731Google Scholar

    [8]

    Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G, Wang F H 2015 J Chem. Phys. 143 024302Google Scholar

    [9]

    Yang Q S, Li S C, Yu Y, Gao T 2018 J. Phys. Chem. A 122 3021Google Scholar

    [10]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302Google Scholar

    [11]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309Google Scholar

    [12]

    Yuan X, Yin S, Shen Y, Liu Y, Lian Y, Xu H F, Yan B 2018 J. Chem. Phys. 149 094306Google Scholar

    [13]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001Google Scholar

    [14]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta, Part A. 182 130Google Scholar

    [15]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta, Part A. 185 365Google Scholar

    [16]

    Wan M J, Huang D H, Yu Y, Zhang Y G 2017 Phys. Chem. Chem. Phys. 17 27360

    [17]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [18]

    万明杰, 罗华锋, 袁娣, 李松 2019 物理学报 68 173102Google Scholar

    Wan M J, Luo H F, Yuan D, Li S 2019 Acta Phys. Sin. 68 173102Google Scholar

    [19]

    万明杰, 柳福提, 黄多辉 2021 物理学报 70 033101Google Scholar

    Wan M J, Liu F T, Huang D H, 2021 Acta Phys. Sin. 70 033101Google Scholar

    [20]

    Carlsten J L, Peterson J R. Lineberger W C 1976 Chem. Phys. Lett. 37 5Google Scholar

    [21]

    Miller T M, Leopold D G, Murray K K, Lineberger W C 1986 J. Chem. Phys. 85 2368Google Scholar

    [22]

    Jordan K D, Luken W 1976 J Chem. Phys. 64 2760Google Scholar

    [23]

    Li S, Zheng R, Chen S J, Fan Q C 2015 Mol. Phys. 113 1433Google Scholar

    [24]

    Weck P F, Kirby K, Stancil P C 2004 J. Chem. Phys. 120 4216Google Scholar

    [25]

    Kurosaki Y, Yokoyama K 2012 J. Chem. Phys. 137 064305Google Scholar

    [26]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (Version 2010.1)

    [27]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [28]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [29]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [30]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [31]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1283

    [32]

    Xiao K L, Yang C L, Wang M S, Ma X G, Liu W W 2013 J. Chem. Phys. 139 074305Google Scholar

    [33]

    Weigend F 2008 J. Comput. Chem. 29 167Google Scholar

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [35]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663)

    [36]

    Haeffler G, Hanstrorp D, Kiyan I, Klinkmueller A E, Ljungblad U, Pegg D 1996 Phys. Rev. A 53 4127Google Scholar

    [37]

    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmueller A E, Ljungblad U, Maartensson-Pendrill A M 1995 Phys. Rev. A 51 231Google Scholar

    [38]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: US Govt Printing Office) pp9, 195

    [39]

    尹俊豪, 杨涛, 印建平 2021 物理学报 70 163302Google Scholar

    Yin J H, Yang T, Yin J P 2021 Acta Phys. Sin. 70 163302Google Scholar

  • [1] Zhu Yu-Hao, Li Rui. Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method. Acta Physica Sinica, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [2] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [3] Wan Ming-Jie, Liu Fu-Ti, Huang Duo-Hui. Spectroscopic and transition properties of SeH anion including spin-orbit coupling. Acta Physica Sinica, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [4] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [5] Wan Ming-Jie, Li Song, Jin Cheng-Guo, Luo Hua-Feng. Theoretical study of laser-cooled SH anion. Acta Physica Sinica, 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [6] Wan Ming-Jie, Luo Hua-Feng, Yuan Di, Li Song. Theoretical study of laser cooling of potassium chloride anion. Acta Physica Sinica, 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [7] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [8] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [9] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Spectroscopic properties of BCl (X1Σ+, a3Π, A1Π) molecule. Acta Physica Sinica, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [10] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [11] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic properties of AlC (X4∑-, B4∑-) molecule. Acta Physica Sinica, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [12] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [13] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [14] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Study on spectroscopic properties of B2 (X3g-, A3u) molecule. Acta Physica Sinica, 2012, 61(20): 203101. doi: 10.7498/aps.61.203101
    [15] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao. Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [16] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [17] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [19] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [20] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
Metrics
  • Abstract views:  4955
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2021
  • Accepted Date:  09 October 2021
  • Available Online:  20 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回