Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Working principle and layout logic of closed magnetic field in sputtering

Cui Sui-Han Guo Yu-Xiang Chen Qiu-Hao Jin Zheng Yang Chao Wu Zhong-Can Su Xiong-Yu Ma Zheng-Yong Tian Xiu-Bo Wu Zhong-Zhen

Citation:

Working principle and layout logic of closed magnetic field in sputtering

Cui Sui-Han, Guo Yu-Xiang, Chen Qiu-Hao, Jin Zheng, Yang Chao, Wu Zhong-Can, Su Xiong-Yu, Ma Zheng-Yong, Tian Xiu-Bo, Wu Zhong-Zhen
PDF
HTML
Get Citation
  • Closed magnetic field constructed by unbalanced magnetron sputtering (MS) cathodes has been a general means of developing the MS coating system. However, owing to the difficulties in characterizing the complex plasma behaviors, there are still no quantitative criteria or design bases for some critical points, such as the effective object, the working mechanism, the closure condition, the layout logic and the effectivity of the closed magnetic field. Here in this work, out of the movements of charged particles in magnetic field, the motion behaviors of electrons and ions in the vacuum chamber are studied and it is also revealed that the closed magnetic field can affect mainly the electrons and further control the distributions of ions. A Monte-Carlo collision (MCC) model of the closed magnetic field MS coating system is established by test-electron to characterize the plasma transport characteristics, and the electron constraint and coating deposition efficiency are studied by different layouts of the magnetron cathodes and the ion sources. The simulation results show that the cathode numbers and vacuum chamber size determine the constraint effect on electrons in closed magnetic field. By 8 MS cathodes and the chamber radius of 0.5 m, the proportion of the overflow electrons can decrease to 1.77%. To increase the proportion of the electrons in the coating region, four coupled magnetic fields are introduced in the center of vacuum chamber. The studies of cathode type, rotation angle and magnetic field direction reveal that the proportion of the overflow electrons is less than 3%. A local dense plasma distribution and a continuous uniform plasma distribution can be observed in the vacuum chamber, corresponding to the same and opposite layout in magnetic poles of the MS cathodes and the ion sources, and the proportion of the electrons in the coating region significantly increases to 53.41% and 42.25%, respectively.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the National Materials Genome Project of China (Grant No. 2016YFB0700600) and the Science and Research Fundation of Shenzhen, China (Grant No. JSGG20191129112631389).
    [1]

    Window B, Savvides N 1986 J. Vac. Sci. Technol. A-Vac. Surf. Films 4 196Google Scholar

    [2]

    Window B 1986 J. Vac. Sci. Technol. A-Vac. Surf. Films 4 453Google Scholar

    [3]

    Savvides N, Window B 1986 J. Vac. Sci. Technol. A 4 504Google Scholar

    [4]

    Kelly P J, Arnell R D, Ahmed W, Afzal A 1996 Mater. Des. 17 215Google Scholar

    [5]

    Monaghan D P, Teer D G, Laing K C, Efeoglu I, Arnell R D 1993 Surf. Coat. Technol. 59 21Google Scholar

    [6]

    Arnell R D, Kelly P J 1999 Surf. Coat. Technol. 112 170Google Scholar

    [7]

    Zhou J, Wu Z, Liu Z H 2008 J. Univ. Sci. Technol. Beijing Miner. Metallurgy Mater. 15 775

    [8]

    Kelly P J, Aenell R D 1998 Surf. Coat. Technol. 108 317

    [9]

    Kelly P J, Arnell R D 1998 J. Vac. Sci. Technol. A-Vac. Surf. Films 16 2858Google Scholar

    [10]

    Rohde S L, Petrov I, Sproul W D, Barnett S A, Rudnik P J, Graham M E 1990 Thin Solid Films 193 117

    [11]

    Sproul W D, Rudnik P J, Graham M E, Rohde S L 1990 Surf. Coat. Technol. 43 270

    [12]

    蒋百灵, 曹政, 鲁媛媛, 栾亚 2011 材料热处理学报 32 92

    Jiang B L, Cao Z, Lu Y Y, Luan Y 2011 Transact. mater. heat treatment 32 92

    [13]

    Kelly P J, Arnell R D 1996 Surf. Coat. Technol. 86–87 425

    [14]

    Kelly P J, Arnell R D 1998 Vacuum 49 43Google Scholar

    [15]

    迈克尔·A. 力伯曼, 阿伦·J. 里登伯格著(浦以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第18—30页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp5–7 (in Chinese)

    [16]

    曹政, 蒋百灵, 鲁媛媛, 王陶 2011 材料研究学报 25 313

    Cao Z, Jiang B L, Lu Y Y, Wang T 2011 Chin. J. Mater. Res. 25 313

    [17]

    陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良 2014 物理学报 63 098103Google Scholar

    Chen M, Zhou X Y, Mao X J, Shao J J, Yang G L 2014 Acta Phys. Sin. 63 098103Google Scholar

    [18]

    Yusupov M, Bultinck E, Depla D, Bogaerts 2011 New J. Phys. 13 033018Google Scholar

    [19]

    Bultinck E, Bogaerts A 2009 New J. Phys. 11 103010Google Scholar

    [20]

    汪天龙, 邱清泉, 靖立伟, 张小波 2018 物理学报 67 070703Google Scholar

    Wang T L, Qiu Q Q, Jing L W, Zhang X B 2018 Acta Phys. Sin. 67 070703Google Scholar

    [21]

    Shidoji E, Ohtake H, Nakano N, Makabe T 1999 Jpn. J. Appl. Phys. Part 1 38 2131

    [22]

    Kim J S, Liu C, Edgell D H, Pardo R 2006 Rev. Sci. Instrum. 77 03B106Google Scholar

    [23]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu J Y, Tian X B, Zhu J H, Tan W C 2019 Acta Phys. Sin 68 195204

    [24]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A-Vac. Surf. Films 5 2276Google Scholar

    [25]

    Rossnagel S M, Kaufman H R 1988 J. Vac. Sci. Technol. A-Vac. Surf. Films 6 223Google Scholar

    [26]

    弗朗西斯F. 陈(林光海 译) 1980 等离子体物理学导论 (北京: 科学出版社) 第5—7页

    Chen F F (translated by Lin G H) 1980 Introduction to Plasma Physics (Beijing: Science Press) pp5–7 (in Chinese)

    [27]

    Sirghi L, Aoki T, Hatanaka Y 2004 Surf. Coat. Technol. 187 358Google Scholar

    [28]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Fu J Y, Chu P K, Wu Z Z 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [29]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [30]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

  • 图 1  仿真区域示意图, el表示弹性碰撞, iz表示电离碰撞, ex表示激发碰撞

    Figure 1.  Schematic diagram of simulation region, el represents elastic collision, iz represents ionization collision, ex represents excitation collision.

    图 2  真空室内磁感应强度分布

    Figure 2.  Distribution of magnetic induction intensity in vacuum chamber.

    图 3  (a)闭合磁场; (b)非闭合磁场; (c) 10 μs闭合磁场电子分布; (d) 10 μs非闭合磁场电子分布

    Figure 3.  (a) Closed and (b) unclosed magnetic field; electron distribution in (c) closed and (d) unclosed magnetic field at 10 μs.

    图 4  (a)实际磁感应强度与临界磁感应强度; (b)磁场闭合程度示意图

    Figure 4.  (a) The actual and limit magnetic induction intensity; (b) closure degree of magnetic field.

    图 5  磁场分布和对应的30 μs的检验电子概率密度分布 (a)四阴极; (b)六阴极; (c)八阴极; (d)十阴极

    Figure 5.  Distribution of the magnetic field and the electronic probability density at 30 μs: (a) Four cathodes; (b) six cathodes; (c) eight cathodes; (d) ten cathodes.

    图 6  磁场分布和对应的30 μs的检验电子概率密度分布 (a) 400 mm; (b) 500 mm; (c) 600 mm; (d) 700 mm

    Figure 6.  Distribution of the magnetic field and the electronic probability density at 30 μs: (a) 400 mm; (b) 500 mm; (c) 600 mm; (d) 700 mm.

    图 7  磁场分布和对应的30 μs的检验电子概率密度分布 (a)正对相吸; (b)正对相斥

    Figure 7.  Distribution of the magnetic field and the electronic probability density at 30 μs: (a) Attract exactly; (b) repel exactly.

    图 8  相吸模式下磁场分布和对应的30 μs的检验电子概率密度分布 (a) 0°; (b) 15°; (c) 30°; (d) 45°

    Figure 8.  Distribution of the magnetic field and the electronic probability density at 30 μs in attraction mode: (a) 0°; (b) 15°; (c) 30°; (d) 45°.

    图 9  相斥模式下磁场分布和对应的30 μs的检验电子概率密度分布 (a) 0°; (b) 15°; (c) 30°; (d) 45°

    Figure 9.  Distribution of the magnetic field and the electronic probability density at 30 μs: (a) 0°; (b) 15°; (c) 30°; (d) 45°.

    图 10  不同转角下镀膜区域电子占比(30 μs)

    Figure 10.  The proportion of the electron in the coating region with different angles at 30 μs.

    表 1  电子参与的Ar放电主要反应表

    Table 1.  Reactions of Ar discharge involving electrons.

    序号反应方程式反应类型反应能量阈值/eV
    1e + Ar → Ar+ + 2e电离碰撞15.7
    2e + Ar → Arm + e激发碰撞11.5
    3e + Ar → Ar + e弹性碰撞
    DownLoad: CSV

    表 2  不同数量阴极构成的闭合磁场中30 μs电子运动情况统计

    Table 2.  Statistics of electron motion in closed magnetic field composed of 4, 6, 8 and 10 cathodes at 30 μs.

    阴极数量电子溢出比例/%镀膜区域电子占比/%
    47.5722.77
    64.4525.78
    81.7727.53
    100.1026.87
    DownLoad: CSV

    表 3  不同真空室尺寸构成的闭合磁场中30 μs电子运动情况统计

    Table 3.  Statistics of electron motion in closed magnetic field with different sizes at 30 μs.

    真空室尺寸/mm电子溢出比例/%镀膜区域电子占比/%
    4000.8229.93
    5001.7727.53
    6003.9521.59
    7005.4919.13
    DownLoad: CSV
  • [1]

    Window B, Savvides N 1986 J. Vac. Sci. Technol. A-Vac. Surf. Films 4 196Google Scholar

    [2]

    Window B 1986 J. Vac. Sci. Technol. A-Vac. Surf. Films 4 453Google Scholar

    [3]

    Savvides N, Window B 1986 J. Vac. Sci. Technol. A 4 504Google Scholar

    [4]

    Kelly P J, Arnell R D, Ahmed W, Afzal A 1996 Mater. Des. 17 215Google Scholar

    [5]

    Monaghan D P, Teer D G, Laing K C, Efeoglu I, Arnell R D 1993 Surf. Coat. Technol. 59 21Google Scholar

    [6]

    Arnell R D, Kelly P J 1999 Surf. Coat. Technol. 112 170Google Scholar

    [7]

    Zhou J, Wu Z, Liu Z H 2008 J. Univ. Sci. Technol. Beijing Miner. Metallurgy Mater. 15 775

    [8]

    Kelly P J, Aenell R D 1998 Surf. Coat. Technol. 108 317

    [9]

    Kelly P J, Arnell R D 1998 J. Vac. Sci. Technol. A-Vac. Surf. Films 16 2858Google Scholar

    [10]

    Rohde S L, Petrov I, Sproul W D, Barnett S A, Rudnik P J, Graham M E 1990 Thin Solid Films 193 117

    [11]

    Sproul W D, Rudnik P J, Graham M E, Rohde S L 1990 Surf. Coat. Technol. 43 270

    [12]

    蒋百灵, 曹政, 鲁媛媛, 栾亚 2011 材料热处理学报 32 92

    Jiang B L, Cao Z, Lu Y Y, Luan Y 2011 Transact. mater. heat treatment 32 92

    [13]

    Kelly P J, Arnell R D 1996 Surf. Coat. Technol. 86–87 425

    [14]

    Kelly P J, Arnell R D 1998 Vacuum 49 43Google Scholar

    [15]

    迈克尔·A. 力伯曼, 阿伦·J. 里登伯格著(浦以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第18—30页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp5–7 (in Chinese)

    [16]

    曹政, 蒋百灵, 鲁媛媛, 王陶 2011 材料研究学报 25 313

    Cao Z, Jiang B L, Lu Y Y, Wang T 2011 Chin. J. Mater. Res. 25 313

    [17]

    陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良 2014 物理学报 63 098103Google Scholar

    Chen M, Zhou X Y, Mao X J, Shao J J, Yang G L 2014 Acta Phys. Sin. 63 098103Google Scholar

    [18]

    Yusupov M, Bultinck E, Depla D, Bogaerts 2011 New J. Phys. 13 033018Google Scholar

    [19]

    Bultinck E, Bogaerts A 2009 New J. Phys. 11 103010Google Scholar

    [20]

    汪天龙, 邱清泉, 靖立伟, 张小波 2018 物理学报 67 070703Google Scholar

    Wang T L, Qiu Q Q, Jing L W, Zhang X B 2018 Acta Phys. Sin. 67 070703Google Scholar

    [21]

    Shidoji E, Ohtake H, Nakano N, Makabe T 1999 Jpn. J. Appl. Phys. Part 1 38 2131

    [22]

    Kim J S, Liu C, Edgell D H, Pardo R 2006 Rev. Sci. Instrum. 77 03B106Google Scholar

    [23]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu J Y, Tian X B, Zhu J H, Tan W C 2019 Acta Phys. Sin 68 195204

    [24]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A-Vac. Surf. Films 5 2276Google Scholar

    [25]

    Rossnagel S M, Kaufman H R 1988 J. Vac. Sci. Technol. A-Vac. Surf. Films 6 223Google Scholar

    [26]

    弗朗西斯F. 陈(林光海 译) 1980 等离子体物理学导论 (北京: 科学出版社) 第5—7页

    Chen F F (translated by Lin G H) 1980 Introduction to Plasma Physics (Beijing: Science Press) pp5–7 (in Chinese)

    [27]

    Sirghi L, Aoki T, Hatanaka Y 2004 Surf. Coat. Technol. 187 358Google Scholar

    [28]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Fu J Y, Chu P K, Wu Z Z 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [29]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [30]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

  • [1] Liu Wen-Shu, Gao Run-Liang, Feng Hong-Mei, Liu Yue-Yue, Huang Yi, Wang Jian-Bo, Liu Qing-Fang. Influence of magentic annealing temperature on microstructure and magnetic properties of NiCu alloy film. Acta Physica Sinica, 2020, 69(9): 097401. doi: 10.7498/aps.69.20191942
    [2] Hao Guang-Hui, Han Pan-Yang, Li Xing-Hui, Li Ze-Peng, Gao Yu-Juan. The electron emission characteristics of GaAs photocathode with vacuum-channel structure. Acta Physica Sinica, 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [3] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [4] Mo Run-Yang, Wu Lin-Yan, Zhan Si-Nan, Zhang Yin-Hong. Effect of magnetic field on single-bubble in water. Acta Physica Sinica, 2015, 64(12): 124301. doi: 10.7498/aps.64.124301
    [5] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [6] Ding Guang-Tao. Analytical mechanics representations of a moving charged particle in a magnetic field with radiation friction. Acta Physica Sinica, 2012, 61(2): 020204. doi: 10.7498/aps.61.020204
    [7] Zhu Kong-Jin, Yang Li-Zhong. The effects of exit position and internal layout of classroom on evacuation efficiency. Acta Physica Sinica, 2010, 59(11): 7701-7707. doi: 10.7498/aps.59.7701
    [8] Zhao Ding. Research on feasibility of closed and offset PCM focusing structures for sheet electron beams. Acta Physica Sinica, 2010, 59(3): 1712-1720. doi: 10.7498/aps.59.1712
    [9] Ren Shu-Yang, Ren Zhong-Ming, Ren Wei-Li, Cao Guang-Hui. Influence of 3 T magnetic field on the crystal structure of Zn films prepared by vapor deposition. Acta Physica Sinica, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [10] Wang Xiao-Yan, Wang Peng-Cheng, Feng Sheng_Ping, Xie Jin_Dong. Recurrence spectra and closed orbits of He+2 in parallel electric and magnetic fields. Acta Physica Sinica, 2008, 57(3): 1347-1351. doi: 10.7498/aps.57.1347
    [11] Wang Hai-Long, Wu Qun, Li Le-Wei, Wu Jian, Meng Fan-Yi. The closed solution and verification of the electromagnetic field of a vertical dipole over the sphere. Acta Physica Sinica, 2007, 56(1): 195-200. doi: 10.7498/aps.56.195
    [12] Wang Xin-Jun, Wang Ling-Ling, Huang Wei-Qing, Tang Li-Ming, Chen Ke-Qiu. The localized electronic states and transmission spectra in N-layer superlattice with structural defects in finite magnetic fields. Acta Physica Sinica, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [13] Liang Hong-Chang, Zhu Qing-Xin. . Acta Physica Sinica, 2002, 51(10): 2202-2204. doi: 10.7498/aps.51.2202
    [14] Cang Yu, Zhang Jie, Qiu Yang, Zhang Jun, Peng Lian-Mao. . Acta Physica Sinica, 2002, 51(4): 843-846. doi: 10.7498/aps.51.843
    [15] WU QI-XUE. DOUBLE-WAVE DESCRIPTION OF THE MOTION OF SPINNING ELECTRON IN BOTH ELECTROMAGNETIC FIELD AND TWO-DIMENSIONAL HARMONIC OSCILLATOR POTENTIAL FIELD. Acta Physica Sinica, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
    [16] CHEN YONG-ZHOU, CHEN QING-MING, LI JUN, LAI JIAN-JUN, QIU JUN-LIN. COMPUTER SIMULATION OF THE ELECTRON MOTION IN A HELIUM HOLLOW-CATHODE DISCHARGE CONFINED BY A MAGNETIC FIELD. Acta Physica Sinica, 1998, 47(10): 1665-1672. doi: 10.7498/aps.47.1665
    [17] HUANG XIANG-YOU, LIU QUAN-HUI, TIAN XU, QIU ZHONG-PING. DOUBLE WAVE DESCRIPTION OF THE MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD. Acta Physica Sinica, 1993, 42(2): 180-187. doi: 10.7498/aps.42.180
    [18] Zhang Shi-chang, Wang Wen-yao. LINEAR AND NONLINEAR CALCULATIONS OF THE 3-DIMENSIONAL MOTION OF RELATIVISTIC ELECTRONS IN THE ELECTROMAGNETIC WIGGLER AND AXIAL GUIDE FIELD. Acta Physica Sinica, 1991, 40(5): 748-755. doi: 10.7498/aps.40.748
    [19] MU JIAN-LIN, CAI SHI-DONG. THRESHOLD OF STOCHASTIC MOTION OF CHARGED PAR-TICLES IN GRADIENT MAGNETIC FIELD BY ELECTROSTATIC WAVE. Acta Physica Sinica, 1989, 38(11): 1818-1825. doi: 10.7498/aps.38.1818
    [20] XIONG XIAO-MING, ZHOU SHI-XUN. QUANTIZED MOTION OF TWO-DIMENSIONAL ELECTRONS IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, 1987, 36(7): 935-939. doi: 10.7498/aps.36.935
Metrics
  • Abstract views:  5497
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2021
  • Accepted Date:  13 October 2021
  • Available Online:  25 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回