-
In laser absorption spectroscopy, in order to improve gas detection sensitivity, optical cavity with high finesse is used to prolong the interaction path between the laser and the absorber. However, the birefringence of high reflectivity cavity mirrors generates two polarization eigenstates, and owing to the different phase shifts along the two directions, the cavity mode will be split. In this work, we first measure the cavity enhanced signal under birefringence and observe the mode split. And a model to mimic cavity enhanced spectroscopy under birefringent effect is presented, which can accurately fit the different polarization ratios at transmission. Finally, we propose a cavity ring-down signal model considering different coupling efficiencies of the two polarization directions of the cavity. Comparing with the conventional exponential model, the standard deviation of residual maximum suppression is as high as 9 times. And this analysis is helpful in improving the signal-to-noise ratio and uncertainty of cavity ring-down signal and increasing the accuracy of concentration inversion.
-
Keywords:
- Fabry–Pérot cavity /
- birefringence /
- cavity ring-down spectroscopy
[1] Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495
Google Scholar
[2] Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nature. Photon. 6 687
Google Scholar
[3] Jordan B C, William K, Martin M F, Eric G 2001 Appl. Opt. 40 3753
Google Scholar
[4] Ishibashi C, Sasada H 1999 Jpn. J. Appl. Phys. 38 920
Google Scholar
[5] Robert C 2007 Appl. Opt. 46 5408
Google Scholar
[6] Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523
Google Scholar
[7] Liu J, Zhou Y, Guo S, Hou J, Zhao G, Ma W, Wu Y, Dong L, Zhang L, Yin W, Xiao L, Axner O, Jia S 2019 Opt Express. 27 1249
Google Scholar
[8] Livio G, Richard F W, Leo H 1999 J. Opt. Soc. Am. B 16 2247
Google Scholar
[9] 赵卫雄, 高晓明, 张为俊, 黄 腾 2006 光学学报 26 1260
Google Scholar
Zhao W X, Gao X M, Zhang W J, Huang T 2006 Acta Opt. Sin. 26 1260
Google Scholar
[10] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 物理学报 61 060702
Google Scholar
Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta. Phys. Sin. 61 060702
Google Scholar
[11] Zalicki P, Zare R N 1995 J. Chem. Phys. 102 2708
Google Scholar
[12] Zhao G, Bailey D M, Fleisher A J, Hodges J T, Lehmann K K 2020 Phys. Rev. A 101 062509
Google Scholar
[13] 胡纯栋, 焉镜洋, 王 艳, 梁立振 2018 光谱学与光谱分析 38 346
Hu C D, Y J Y, W Y, Liang L Z 2018 Spectrosc. Spect. Anal. 38 346
[14] Li Z X, Ma W G, Fu X F, Tan W, Zhao G, Dong L, Zhang L, Yin W B, Jia S T 2013 Appl. Phys. Express 6 072402
Google Scholar
[15] Ye J, Ma L S, Hall J 1996 Opt. Lett. 21 1000
Google Scholar
[16] Zhao G, Hausmaninger T, Ma W, Axner O 2018 Opt. Lett. 43 715
Google Scholar
[17] 肖石磊, 李斌成 2020 光电工程 47 190068
Xiao S L, Li B C 2020 Opto-Electronic Engineering 47 190068
[18] Winkler G, Perner L W, Truong G W, Zhao G, Bachmann D, Mayer A S, Fellinger J, Follman D, Heu P, Deutsch C, Bailey D M, Peelaers H, Puchegger S, Fleisher A J, Cole G D, Heckl O H 2021 Optica 8 686
Google Scholar
[19] Xiao S, Li B, Wang J 2020 Appl. Opt. 59 A99
Google Scholar
[20] 付小芳, 赵 刚, 马维光, 谭巍, 李志新, 董 磊, 张雷, 尹王保, 贾锁堂 2014 光谱学与光谱分析 34 1456
Google Scholar
Fu X F, Zhao G, Ma W G, Tan W, Li Z X, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 1456
Google Scholar
[21] Huang H F, Lehmann K K 2008 Appl. Opt. 47 3817
Google Scholar
[22] Fleisher A J, Long D A, Liu Q N, Hodges J T 2016 Phys. Rev. A 93 013833
Google Scholar
期刊类型引用(22)
1. 田立良,池浩,党杰. 一种优化服务器电磁辐射性能的自动展频方法. 信息技术与信息化. 2023(05): 136-139 . 百度学术
2. 孙会琴,王思飞,田铮. 孔阵腔体屏蔽效能BLT方程修正与拓展分析. 电光与控制. 2023(07): 100-105 . 百度学术
3. 张晗,李常贤. 高频有损斜开孔腔体屏蔽效能研究. 微波学报. 2023(06): 12-17+34 . 百度学术
4. 胡小龙,李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究. 电子测量技术. 2022(05): 80-85 . 百度学术
5. 张岩,田铮,王川川,杨清熙,王思飞. 双层腔体屏蔽效能随孔缝位置与数量变化规律研究. 电工技术学报. 2022(13): 3350-3360 . 百度学术
6. 于海波,张茂强,张晓波,虞晓阳,熊杰,刘彬. 高集成电力电子设备外壳屏蔽效能评估. 安全与电磁兼容. 2021(01): 69-72+79 . 百度学术
7. 公延飞,陈星彤,高超飞,孙剑. 一种快速预测有损腔体屏蔽效能和谐振模式的解析模型. 电工技术学报. 2021(08): 1569-1578 . 百度学术
8. 叶志红,张杰,周健健,苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报. 2020(06): 47-54 . 百度学术
9. 马振洋,左晶,史春蕾,冯嘉诚,刘旭红. 机载电子设备屏蔽效能测试与优化. 航空学报. 2020(07): 226-233 . 百度学术
10. 王金田,刘雪明,商宝莹,李志勇,穆晓彤. 一种计算任意形状孔缝平均电极化率密度的方法. 电子测量技术. 2019(03): 31-34 . 百度学术
11. 王殿海,石成英,蔡星会,易昭湘. 有内置薄板腔体的HEMP屏蔽效能研究. 微波学报. 2019(01): 87-90 . 百度学术
12. 白婉欣,李天乐,郭安琪,成睿琦,焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报. 2019(10): 64-72 . 百度学术
13. 阎芳,刘旭红,王鹏,马振洋,史春蕾,于新海,赵聪. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究. 电光与控制. 2019(08): 90-94+100 . 百度学术
14. 郝建红,公延飞,蒋璐行,范杰清. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究. 电工技术学报. 2018(03): 670-679 . 百度学术
15. 郝建红,蒋璐行,范杰清,公延飞. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型. 电工技术学报. 2017(09): 101-111 . 百度学术
16. 陈珂,杜平安,任丹. 一种基于缝隙天线阻抗的带缝腔体谐振频率计算方法. 电子学报. 2017(01): 232-237 . 百度学术
17. 高雪莲,马士杰,杨凯,李丹. 考虑高次模的孔缝腔体屏蔽效能计算方法. 高电压技术. 2017(10): 3344-3350 . 百度学术
18. 刘宁,张如彬,金杰. 投弃式仪器数据传输信道时频响应求解方法. 电波科学学报. 2016(05): 1009-1015 . 百度学术
19. 阚勇,闫丽萍,赵翔,周海京,刘强,黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报. 2016(03): 88-99 . 百度学术
20. 张玉廷,李冉,高文军,吕争,张华. 等效导纳模型分析航天器VHF/UHF频段屏蔽效能. 宇航学报. 2016(11): 1392-1397 . 百度学术
21. 陈珂,王丹丹,杜平安. 孔缝腔体电磁谐振特性的影响因素分析. 中国科技论文. 2016(20): 2307-2311 . 百度学术
22. 罗静雯,杜平安,任丹,肖培. 基于BLT方程的双层腔体屏蔽效能计算方法. 强激光与粒子束. 2015(11): 166-171 . 百度学术
其他类型引用(16)
-
-
[1] Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495
Google Scholar
[2] Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nature. Photon. 6 687
Google Scholar
[3] Jordan B C, William K, Martin M F, Eric G 2001 Appl. Opt. 40 3753
Google Scholar
[4] Ishibashi C, Sasada H 1999 Jpn. J. Appl. Phys. 38 920
Google Scholar
[5] Robert C 2007 Appl. Opt. 46 5408
Google Scholar
[6] Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523
Google Scholar
[7] Liu J, Zhou Y, Guo S, Hou J, Zhao G, Ma W, Wu Y, Dong L, Zhang L, Yin W, Xiao L, Axner O, Jia S 2019 Opt Express. 27 1249
Google Scholar
[8] Livio G, Richard F W, Leo H 1999 J. Opt. Soc. Am. B 16 2247
Google Scholar
[9] 赵卫雄, 高晓明, 张为俊, 黄 腾 2006 光学学报 26 1260
Google Scholar
Zhao W X, Gao X M, Zhang W J, Huang T 2006 Acta Opt. Sin. 26 1260
Google Scholar
[10] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 物理学报 61 060702
Google Scholar
Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta. Phys. Sin. 61 060702
Google Scholar
[11] Zalicki P, Zare R N 1995 J. Chem. Phys. 102 2708
Google Scholar
[12] Zhao G, Bailey D M, Fleisher A J, Hodges J T, Lehmann K K 2020 Phys. Rev. A 101 062509
Google Scholar
[13] 胡纯栋, 焉镜洋, 王 艳, 梁立振 2018 光谱学与光谱分析 38 346
Hu C D, Y J Y, W Y, Liang L Z 2018 Spectrosc. Spect. Anal. 38 346
[14] Li Z X, Ma W G, Fu X F, Tan W, Zhao G, Dong L, Zhang L, Yin W B, Jia S T 2013 Appl. Phys. Express 6 072402
Google Scholar
[15] Ye J, Ma L S, Hall J 1996 Opt. Lett. 21 1000
Google Scholar
[16] Zhao G, Hausmaninger T, Ma W, Axner O 2018 Opt. Lett. 43 715
Google Scholar
[17] 肖石磊, 李斌成 2020 光电工程 47 190068
Xiao S L, Li B C 2020 Opto-Electronic Engineering 47 190068
[18] Winkler G, Perner L W, Truong G W, Zhao G, Bachmann D, Mayer A S, Fellinger J, Follman D, Heu P, Deutsch C, Bailey D M, Peelaers H, Puchegger S, Fleisher A J, Cole G D, Heckl O H 2021 Optica 8 686
Google Scholar
[19] Xiao S, Li B, Wang J 2020 Appl. Opt. 59 A99
Google Scholar
[20] 付小芳, 赵 刚, 马维光, 谭巍, 李志新, 董 磊, 张雷, 尹王保, 贾锁堂 2014 光谱学与光谱分析 34 1456
Google Scholar
Fu X F, Zhao G, Ma W G, Tan W, Li Z X, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 1456
Google Scholar
[21] Huang H F, Lehmann K K 2008 Appl. Opt. 47 3817
Google Scholar
[22] Fleisher A J, Long D A, Liu Q N, Hodges J T 2016 Phys. Rev. A 93 013833
Google Scholar
期刊类型引用(22)
1. 田立良,池浩,党杰. 一种优化服务器电磁辐射性能的自动展频方法. 信息技术与信息化. 2023(05): 136-139 . 百度学术
2. 孙会琴,王思飞,田铮. 孔阵腔体屏蔽效能BLT方程修正与拓展分析. 电光与控制. 2023(07): 100-105 . 百度学术
3. 张晗,李常贤. 高频有损斜开孔腔体屏蔽效能研究. 微波学报. 2023(06): 12-17+34 . 百度学术
4. 胡小龙,李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究. 电子测量技术. 2022(05): 80-85 . 百度学术
5. 张岩,田铮,王川川,杨清熙,王思飞. 双层腔体屏蔽效能随孔缝位置与数量变化规律研究. 电工技术学报. 2022(13): 3350-3360 . 百度学术
6. 于海波,张茂强,张晓波,虞晓阳,熊杰,刘彬. 高集成电力电子设备外壳屏蔽效能评估. 安全与电磁兼容. 2021(01): 69-72+79 . 百度学术
7. 公延飞,陈星彤,高超飞,孙剑. 一种快速预测有损腔体屏蔽效能和谐振模式的解析模型. 电工技术学报. 2021(08): 1569-1578 . 百度学术
8. 叶志红,张杰,周健健,苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报. 2020(06): 47-54 . 百度学术
9. 马振洋,左晶,史春蕾,冯嘉诚,刘旭红. 机载电子设备屏蔽效能测试与优化. 航空学报. 2020(07): 226-233 . 百度学术
10. 王金田,刘雪明,商宝莹,李志勇,穆晓彤. 一种计算任意形状孔缝平均电极化率密度的方法. 电子测量技术. 2019(03): 31-34 . 百度学术
11. 王殿海,石成英,蔡星会,易昭湘. 有内置薄板腔体的HEMP屏蔽效能研究. 微波学报. 2019(01): 87-90 . 百度学术
12. 白婉欣,李天乐,郭安琪,成睿琦,焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报. 2019(10): 64-72 . 百度学术
13. 阎芳,刘旭红,王鹏,马振洋,史春蕾,于新海,赵聪. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究. 电光与控制. 2019(08): 90-94+100 . 百度学术
14. 郝建红,公延飞,蒋璐行,范杰清. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究. 电工技术学报. 2018(03): 670-679 . 百度学术
15. 郝建红,蒋璐行,范杰清,公延飞. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型. 电工技术学报. 2017(09): 101-111 . 百度学术
16. 陈珂,杜平安,任丹. 一种基于缝隙天线阻抗的带缝腔体谐振频率计算方法. 电子学报. 2017(01): 232-237 . 百度学术
17. 高雪莲,马士杰,杨凯,李丹. 考虑高次模的孔缝腔体屏蔽效能计算方法. 高电压技术. 2017(10): 3344-3350 . 百度学术
18. 刘宁,张如彬,金杰. 投弃式仪器数据传输信道时频响应求解方法. 电波科学学报. 2016(05): 1009-1015 . 百度学术
19. 阚勇,闫丽萍,赵翔,周海京,刘强,黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报. 2016(03): 88-99 . 百度学术
20. 张玉廷,李冉,高文军,吕争,张华. 等效导纳模型分析航天器VHF/UHF频段屏蔽效能. 宇航学报. 2016(11): 1392-1397 . 百度学术
21. 陈珂,王丹丹,杜平安. 孔缝腔体电磁谐振特性的影响因素分析. 中国科技论文. 2016(20): 2307-2311 . 百度学术
22. 罗静雯,杜平安,任丹,肖培. 基于BLT方程的双层腔体屏蔽效能计算方法. 强激光与粒子束. 2015(11): 166-171 . 百度学术
其他类型引用(16)
Catalog
Metrics
- Abstract views: 5968
- PDF Downloads: 119
- Cited By: 38