Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of design principles of the experiments on the National Ignition Facility since 2010

Zhang Qi Ma Ji-Rui Fan Jin-Yan Zhang Jie

Citation:

Analysis of design principles of the experiments on the National Ignition Facility since 2010

Zhang Qi, Ma Ji-Rui, Fan Jin-Yan, Zhang Jie
PDF
HTML
Get Citation
  • Since completion of the National Ignition Facility (NIF) in 2010, more than 1030 experiments were carried out to achieve ignition. Though the experiments were unsuccessful in the first 8 years, the NIF has improved the experimental designs and achieved fusion yields from 55kJ, 170kJ to 1.35MJ since 2019, approaching to the ignition milestone. The designs are based on the experimental database, which has been widely used for optimization design, yield prediction, corrected simulation, etc. However, so far the published experimental data is very limited. Also, it is difficult to obtain a completion data matrix for analyzing and understanding the experimental designs of NIF experiments at each stage and to know how the NIF sets strategic priorities for each phase.In this paper, we proposed an optimization method, which combines the PMM algorithm and trust region algorithm, to restore the missing NIF experimental data. Based on the completed data, the design principles of experiments on the NIF were analyzed, and the hot spot pressure was predicted by machine learning algorithms. The results may be helpful for the designs of laser fusion ignition experiments in China.
      Corresponding author: Zhang Jie, jzhang@iphy.ac.cn
    • Funds: Project supported by the Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDA25010100) and the National Natural Science Foundation of China (Grant No. 11971309)
    [1]

    Zylstra A B, Kritcher A L, Callahan D A, Ralph J E, Some basic principles of ICF and some recent burning plasma results, 2021 LLNL-PRES-825381

    [2]

    Kritcher A L, Initial results from the HYBRID-E DT experiment N210808 with >1.3 MJ yield, 2021 LLNL-PRES-826367

    [3]

    Ross J S, Ralph J E, Zylstra A B, Kritcher A L, Robey H F 2021 arXiv: 2111.04640 [physics. plasma-ph]

    [4]

    Zylstra A B, Hurricane O A, Callahan D A, Kritcher A L, Ralph J E 2022 Nature 601 542Google Scholar

    [5]

    Pape L S, Hopkins L B, Divol L, Pak A, Dewald E L 2018 Phys. Rev. Lett. 120 245003Google Scholar

    [6]

    Kritcher A L, Zylstra A B, Callahan D A, Hurricane O A, Weber C 2021 Phys. Plasma 28 072706Google Scholar

    [7]

    Hatfield P W, Rose S J, Scott R 2019 Phys. Plasma 26 062706Google Scholar

    [8]

    Hatfield P W, Rose S J, Scott R 2019 IEEE Trans. Plasma Sci. 60 1.22Google Scholar

    [9]

    Gaffnev J A, Brandon S T, Humbird K D, Kruse K G, Nora R C, Peterson J L, Spears B K 2019 Phys. Plasma 26 082704Google Scholar

    [10]

    Humbird K D, Peterson J L, McClarren R G 2018 preprint arXiv: 1812.06055

    [11]

    Humbird K D, Peterson J L, Salmonson J, Spears B K 2021 Phys. Plasma 28 042709Google Scholar

    [12]

    Hsu A, Cheng B, Bradley P A 2020 Phys. Plasma 27 012703Google Scholar

    [13]

    Glenzer S H, Brian K S, Edwards M J, Alger E T, Berger R L 2012 Plasma Phys. Control. Fusion 54 045013Google Scholar

    [14]

    Regan S P, Epstein R, Hammel B A, Suter L J, Ralph, Scott H 2012 Phys. Plasma 19 056307Google Scholar

    [15]

    Glenzer S H, Callahan D A, MacKinnon A J, Kline J K, Grim G 2012 Phys. Plasma 19 056318Google Scholar

    [16]

    Robey H F, McGowan B J, Landen O L, LaFortune K N, Widmayer C 2013 Phys. Plasma 20 052707Google Scholar

    [17]

    Callahan D A, Hurricane O A, Ralph J E, Thomas C A, Baker K L 2018 Phys. Plasma 25 056305Google Scholar

    [18]

    Lawson J D 1957 Proc. Phys. Soc. Sect. B 70 6Google Scholar

    [19]

    Hicks D G, Meezan N B, Dewald E L, Mackinnon A J, Olson R E 2012 Phys. Plasma 19 122702Google Scholar

    [20]

    Lindl J, Landen O, Edwards J, Moses E 2014 Phys. Plasma 21 020501Google Scholar

    [21]

    Park H S, Hurricane O A, Callahan D A, Casey D T, Dewald E L 2014 Phys. Rev. Lett. 112 055001Google Scholar

    [22]

    Casey D T, Thomas C A, Baser K L, Spears B K, Hohenberger M 2018 Phys. Plasma 25 056308Google Scholar

    [23]

    Zylstra A B, Casey D T, Kritcher A, Pickworth L, Bachmann B 2020 Phys. Plasma 27 092709Google Scholar

    [24]

    Hohenberger M, Casey D T, Kritcher A L, Pak A, Zylstra A B 2020 Phys. Plasma 27 112704Google Scholar

    [25]

    Robey H F, Hopkins L B, Milovich J L, Meezan N B 2018 Phys. Plasma 25 012711Google Scholar

    [26]

    Hopkins L B, LePape S, Divol L, Pak A, Edwald E, Ho D D 2019 Plasma Phys. Control. Fusion 61 014023Google Scholar

    [27]

    Zylstra A B, MacLaren S, Kline S A Yi J, Callahan D, Hurricane O 2019 Phys. Plasma 26 052707Google Scholar

    [28]

    Hohenberger M, Casey D T, Thomas C A, Landen O L, Baker K L 2019 Phys. Plasma 26 112707Google Scholar

    [29]

    Kritcher A L, Casey D T, Thomas C A, Zylstra A B, Hohenberger M 2020 Phys. Plasma 27 052710Google Scholar

    [30]

    Kritcher A L, Zylstra A B, Callahan D A, Hurricane O A, Weber C 2021 Physics of Plasmas 28 072706

    [31]

    Kritcher A L, Young C V, Robey H F, Weber C R, Zylstra A B 2022 Nat. Phys. 18 251Google Scholar

    [32]

    Hurricane O A, Callahan D A, Springer P T, Edwards M J, Patel P 2019 Plasma Phys. Control. Fusion 61 014033Google Scholar

    [33]

    Rubin D B 1986 J. Bus. Econom. Statist. 4 87Google Scholar

    [34]

    Little R J A 1988 J. Bus. Econom. Statist. 6 287Google Scholar

    [35]

    Buuren S 2018 Flexible Imputation of Missing Data Second Edition (Boca Raton: CRC Press/Taylor & Francis) p77

    [36]

    Yuan Ya-xiang 2015 Math. Program. 151 249Google Scholar

    [37]

    Landen O L, Casey D T, DiNicola J M, Doeppner T, Hartouni E P 2020 High Energy Density Phys. 36 100755Google Scholar

    [38]

    Laser Indirect Drive input to NNSA 2020 Report, 2020 LLNL-TR-810573

    [39]

    Robey HF, Celliers P M, Kline J L, Mackinnon A J, Boehly T R 2012 Phys. Rev. Lett. 108 215004Google Scholar

    [40]

    Robey H F, Boehly T R, Celliers P M, Eqqert J H, Hicks D 2012 Phys. Plasma 19 042706Google Scholar

    [41]

    Review of BigFoot Implosion Data at NIF, Baker K L, Casey D T, Hohenberger M, Kritcher A L, Spears B Khttps://www.lle.rochester.edu/media/publications/presentations/documents/APS19/Thomas_APS19.pdf [2022-02-14]

  • 图 1  NIF各方案已公布的各方案年度发次数与年度总发次数

    Figure 1.  The numbers of NIF shots in various designs and the numbers of annual total shots.

    图 2  4组变量的交叉验证结果 (a)中子产额; (b)内爆速度; (c)热斑压强; (d)靶丸规模

    Figure 2.  Cross-validation results of 4 groups of variables: (a) Fusion yield; (b) implosion velocity; (c) hos-spot pressure; (d) spatial scale factor.

    图 3  NIF间接点火4个阶段中子产额、内爆速度、热斑压强的变化过程 (a) NIC和LF实验阶段; (b)新增HF实验阶段数据; (c) 新增HDC, BF实验阶段数据; (d)新增Hybrid实验阶段数据

    Figure 3.  NIF indirect drive implosion data are plotted in the space of the implosion velocity, the hot-spot pressure, and fusion yield. The various designs are added to subgraph the in turn: (a) The low-foot/NIC implosions; (b) the high-foot implosions; (c) the high-density-carbon designs and the Bigfoot designs; (d) the high yield big radius implosion designs.

    图 4  使用机器学习方法预测热斑压强 (a) 基于2010—2017数据的预测结果; (b) 基于2010—2021数据的预测结果

    Figure 4.  Prediction of hot-spot pressure using machine learning methods: (a) Prediction based on data from 2010 to 2017; (b) prediction based on data from 2010 to 2021.

    表 1  213组数据的变量缺失情况与还原需求

    Table 1.  Missing data classification and imputation needs

    数据情况完整数据组可还原数据组未还原数据组
    缺失变量/个012344或5
    数据/组211914334122
    DownLoad: CSV

    表 A1  原始数据及还原结果(其中上标*的数据为还原所得数据)

    Table A1.  Restoring the original data(the data marked with * is the data obtained from the restoration).

    发次号发次类别αPhs/Gbarvimp/(km·s–1)SYtotal(1015)年份填补数据量
    N110914Velocity1.61163551.0020.5820110
    N111215Shape1.61033121.0220.8520110
    N120205LF2.71053101.0040.59320110
    N120321LF1.61563210.9180.53620120
    N120405LF1.41453241.1370.1420120
    N130927DTHF3 shock2.71403341.0605.120120
    N131119DTHF2.21233521.0535.9820130
    N140120DTHF-CH2.51523560.9389.2520130
    N140520DTHF-HGF-CH2.41523670.9488.9820140
    N141123DTHFAS1.61533200.9261.3720140
    N150115DTHFAS2.31683350.9313.7720140
    N150121DTHF CH2.22193770.9486.2620150
    N161030DTHDCS8BF4.01613900.8441.8720150
    N170109DTHDCS8BF4.02204110.8442.6320160
    N170601HDC2.43203810.9101720170
    N170827DTHDCS92.33603950.91016.620170
    N191117672S9HF2.72803700.8414.9920170
    N201001Hybrid-E3.02843831.05034.920200
    N201122I-raum3.22603761.00037.720200
    N210207Hybrid-E3.03143891.05060.720210
    N210220I-raum3.12813691.0005720210
    N130501DTHF2.0692971.002*0.76720191
    N130710DTHF2.1*593371.0021.220131
    N130812DTHF2.7983251.002*2.78520131
    N140225DTHF2.2*1413340.9382.820131
    N140304DTHF2.71163641.103*9.2820131
    N140707DTHF2.3*1653500.938520141
    N140819DTHF2.72953900.805*5.4720141
    N150416DTHFAS2.3210325*0.9308.4620141
    N171022DTHDCS8BF2.22803730.867*5.8520141
    N171210DT672S9HF2.22303690.886*3.6820151
    N180128DTHDCS9BF3.93114320.839*1920171
    N180204DT672S9HF2.22503850.880*4.1220171
    N190415DT672S9HF2.2221*3750.8414.3720181
    N190422DT672S9HF2.7169*3640.8412.4420181
    N190527DT672S9HF2.5224*3880.8414.7220191
    N190602DT672S9HF2.5217*3780.8414.2520191
    N190918Hybrid-E2.7*1403741.1007.520191
    N191007Hybrid-E2.8*2063741.10018.820191
    N191110Hybrid(HDC)-E2.32733661.0282020191
    N131219DTHF2.5*1203481.117*3.220212
    N140311DTHF2.8*1403721.128*6.0620142
    N160418DTHDCS82.6*176*3780.8452.8620132
    N170328DT672S9HF2.6*2403850.897*5.8320142
    N170524DTHDCS9BF3.1*186*4130.9506.220162
    N170813DT672S9HF2.6*2553850.875*5.7220172
    N180429Hybrid-B2.5*218*3650.9999.520172
    N180618DTBe672S8HF2.3*2203650.776*1.420172
    N180708Hybrid-B2.3*183*3461.0005.220182
    N181007Hybrid-B2.6*194*3721.0509.120212
    N181203Hybrid-B2.8*186*3931.0508.120182
    N181209Hybrid-B2.6*158*3701.0996.320182
    N190203Hybrid-B2.2 *151*3591.0504.420182
    N190318Hybrid-B2.5*168*3671.0997.820182
    N110121Commsissioning1.0*55*363*0.0210.0220183
    N110201Commsissioning2.4*145*334*1.0040.1120193
    N110212Commsissioning1.2*37*244*1.0040.1320193
    N110603Shock timing1.2*50*260*1.0040.06520113
    N110608Shock timing1.8*84*293*1.0040.1920113
    N110615Shock timing2.0*103*308*1.0040.4320113
    N110620Shock timing2.4*228*372*1.0040.4220113
    N110804Velocity1.3*56*267*1.0020.004820113
    N110826Velocity1.6*73*284*1.0020.1720113
    N110904Velocity2.2*124*322*1.0020.4620113
    N110908Velocity2.2*128*324*1.0020.5920113
    N111029Shape1.5*63*274*1.0020.00920113
    N111103Shape2.0*99*305*1.0020.2320113
    N111112Shape2.5*172*348*1.0020.620113
    N120311LF1.8*100*3180.827*0.15920113
    N120316LF1.8*116*3160.838*0.27520113
    N120417LF1.8*140*3140.847*0.53220113
    N120626LF1.8*91*3140.829*0.11820113
    N160207DTHDCS8BF1.3*80*2960.8440.1820123
    N160411DTHDCS81.9*141*3070.8450.62*20123
    N170702SymcapHDCS92.6*55*3590.801*0.220123
    N171015DTHDCS9BF3.2*192*4190.953*8.120123
    N171029DTHDCS9BF3.4*201*4360.969*1020163
    N171112SymcapDTHDCS8BF1.8*112*3070.902*0.720163
    N171119DTHDCS9BF3.4*206*4330.977*1120173
    N171218DTHDCS92.9*285*4080.9871720173
    N180121DTBe672S8HF2.1*113*3280.8180.820173
    N180218DTHDCS93.1*249*4220.99011.7920173
    N180226DTHDCS9BF2.9*241*4040.9791020173
    N180909DT672S9HF3.2*262*4271.0021420173
    N180930DT672S9HF3.5*259*4511.004*1520183
    N181104Hybrid2.6*207*412*1.05010.120183
    N190721DTHDCS8BF2.9*249*4040.988*1120183
    N121125SymcapLF1.4*74*250*0.954*0.2520184
    N130530DTHF2*105*298*1.007*0.6520184
    N130802DTHF1.8*91*296*0.984*0.5320184
    N170821DTHDCS92.8*210*374*1.009*8.720194
    DownLoad: CSV
  • [1]

    Zylstra A B, Kritcher A L, Callahan D A, Ralph J E, Some basic principles of ICF and some recent burning plasma results, 2021 LLNL-PRES-825381

    [2]

    Kritcher A L, Initial results from the HYBRID-E DT experiment N210808 with >1.3 MJ yield, 2021 LLNL-PRES-826367

    [3]

    Ross J S, Ralph J E, Zylstra A B, Kritcher A L, Robey H F 2021 arXiv: 2111.04640 [physics. plasma-ph]

    [4]

    Zylstra A B, Hurricane O A, Callahan D A, Kritcher A L, Ralph J E 2022 Nature 601 542Google Scholar

    [5]

    Pape L S, Hopkins L B, Divol L, Pak A, Dewald E L 2018 Phys. Rev. Lett. 120 245003Google Scholar

    [6]

    Kritcher A L, Zylstra A B, Callahan D A, Hurricane O A, Weber C 2021 Phys. Plasma 28 072706Google Scholar

    [7]

    Hatfield P W, Rose S J, Scott R 2019 Phys. Plasma 26 062706Google Scholar

    [8]

    Hatfield P W, Rose S J, Scott R 2019 IEEE Trans. Plasma Sci. 60 1.22Google Scholar

    [9]

    Gaffnev J A, Brandon S T, Humbird K D, Kruse K G, Nora R C, Peterson J L, Spears B K 2019 Phys. Plasma 26 082704Google Scholar

    [10]

    Humbird K D, Peterson J L, McClarren R G 2018 preprint arXiv: 1812.06055

    [11]

    Humbird K D, Peterson J L, Salmonson J, Spears B K 2021 Phys. Plasma 28 042709Google Scholar

    [12]

    Hsu A, Cheng B, Bradley P A 2020 Phys. Plasma 27 012703Google Scholar

    [13]

    Glenzer S H, Brian K S, Edwards M J, Alger E T, Berger R L 2012 Plasma Phys. Control. Fusion 54 045013Google Scholar

    [14]

    Regan S P, Epstein R, Hammel B A, Suter L J, Ralph, Scott H 2012 Phys. Plasma 19 056307Google Scholar

    [15]

    Glenzer S H, Callahan D A, MacKinnon A J, Kline J K, Grim G 2012 Phys. Plasma 19 056318Google Scholar

    [16]

    Robey H F, McGowan B J, Landen O L, LaFortune K N, Widmayer C 2013 Phys. Plasma 20 052707Google Scholar

    [17]

    Callahan D A, Hurricane O A, Ralph J E, Thomas C A, Baker K L 2018 Phys. Plasma 25 056305Google Scholar

    [18]

    Lawson J D 1957 Proc. Phys. Soc. Sect. B 70 6Google Scholar

    [19]

    Hicks D G, Meezan N B, Dewald E L, Mackinnon A J, Olson R E 2012 Phys. Plasma 19 122702Google Scholar

    [20]

    Lindl J, Landen O, Edwards J, Moses E 2014 Phys. Plasma 21 020501Google Scholar

    [21]

    Park H S, Hurricane O A, Callahan D A, Casey D T, Dewald E L 2014 Phys. Rev. Lett. 112 055001Google Scholar

    [22]

    Casey D T, Thomas C A, Baser K L, Spears B K, Hohenberger M 2018 Phys. Plasma 25 056308Google Scholar

    [23]

    Zylstra A B, Casey D T, Kritcher A, Pickworth L, Bachmann B 2020 Phys. Plasma 27 092709Google Scholar

    [24]

    Hohenberger M, Casey D T, Kritcher A L, Pak A, Zylstra A B 2020 Phys. Plasma 27 112704Google Scholar

    [25]

    Robey H F, Hopkins L B, Milovich J L, Meezan N B 2018 Phys. Plasma 25 012711Google Scholar

    [26]

    Hopkins L B, LePape S, Divol L, Pak A, Edwald E, Ho D D 2019 Plasma Phys. Control. Fusion 61 014023Google Scholar

    [27]

    Zylstra A B, MacLaren S, Kline S A Yi J, Callahan D, Hurricane O 2019 Phys. Plasma 26 052707Google Scholar

    [28]

    Hohenberger M, Casey D T, Thomas C A, Landen O L, Baker K L 2019 Phys. Plasma 26 112707Google Scholar

    [29]

    Kritcher A L, Casey D T, Thomas C A, Zylstra A B, Hohenberger M 2020 Phys. Plasma 27 052710Google Scholar

    [30]

    Kritcher A L, Zylstra A B, Callahan D A, Hurricane O A, Weber C 2021 Physics of Plasmas 28 072706

    [31]

    Kritcher A L, Young C V, Robey H F, Weber C R, Zylstra A B 2022 Nat. Phys. 18 251Google Scholar

    [32]

    Hurricane O A, Callahan D A, Springer P T, Edwards M J, Patel P 2019 Plasma Phys. Control. Fusion 61 014033Google Scholar

    [33]

    Rubin D B 1986 J. Bus. Econom. Statist. 4 87Google Scholar

    [34]

    Little R J A 1988 J. Bus. Econom. Statist. 6 287Google Scholar

    [35]

    Buuren S 2018 Flexible Imputation of Missing Data Second Edition (Boca Raton: CRC Press/Taylor & Francis) p77

    [36]

    Yuan Ya-xiang 2015 Math. Program. 151 249Google Scholar

    [37]

    Landen O L, Casey D T, DiNicola J M, Doeppner T, Hartouni E P 2020 High Energy Density Phys. 36 100755Google Scholar

    [38]

    Laser Indirect Drive input to NNSA 2020 Report, 2020 LLNL-TR-810573

    [39]

    Robey HF, Celliers P M, Kline J L, Mackinnon A J, Boehly T R 2012 Phys. Rev. Lett. 108 215004Google Scholar

    [40]

    Robey H F, Boehly T R, Celliers P M, Eqqert J H, Hicks D 2012 Phys. Plasma 19 042706Google Scholar

    [41]

    Review of BigFoot Implosion Data at NIF, Baker K L, Casey D T, Hohenberger M, Kritcher A L, Spears B Khttps://www.lle.rochester.edu/media/publications/presentations/documents/APS19/Thomas_APS19.pdf [2022-02-14]

  • [1] Li Shu, Wang Yang, Ji Zhi-Cheng, Lan Ke. Global variance reduction method for Monte Carlo simulation of thermal radiation transport. Acta Physica Sinica, 2023, 72(13): 139501. doi: 10.7498/aps.72.20230218
    [2] Huang Tian-Xuan, Wu Chang-Shu, Chen Zhong-Jing, Yan Ji, Li Xin, Ge Feng-Jun, Zhang Xing, Jiang Wei, Deng Bo, Hou Li-Fei, Pu Yu-Dong, Dong Yun-Song, Wang Li-Feng. Improving symmetry tuning with I-raum in indirect-driven implosions. Acta Physica Sinica, 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [3] Xiong Hao, Zhong Zhe-Qiang, Zhang Bin, Sui Zhan, Zhang Xiao-Min. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad. Acta Physica Sinica, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [4] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [5] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [6] Li Hong-Xun, Zhang Rui, Zhu Na, Tian Xiao-Cheng, Xu Dang-Peng, Zhou Dan-Dan, Zong Zhao-Yu, Fan Meng-Qiu, Xie Liang-Hua, Zheng Tian-Ran, Li Zhao-Li. Uniform irradiation of a direct drive target by optimizing the beam parameters. Acta Physica Sinica, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [7] Deng Xue-Wei, Zhou Wei, Yuan Qiang, Dai Wan-Jun, Hu Dong-Xia, Zhu Qi-Hua, Jing Feng. Capsule illumination uniformity illuminated by direct laser-driven irradiation from several tens of directions. Acta Physica Sinica, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [8] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [9] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [10] Li Shu, Li Gang, Tian Dong-Feng, Deng Li. An implicit Monte Carlo method for thermal radiation transport. Acta Physica Sinica, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [11] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [12] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [13] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [14] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Deng Qing-Hua. Experimental study on smoothing by spectral dispersion using linear frequency-modulated pulse. Acta Physica Sinica, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [15] Cheng Wen-Yong, Zhang Xiao-Min, Su Jing-Qin, Zhao Sheng-Zhi, Dong Jun, Li Ping, Zhou Li-Dan. Suppression of small-scale self focusing of high power laser using moving beam. Acta Physica Sinica, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [16] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [18] Yao Xin, Gao Fu-Hua, Li Jian-Feng, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang. Study on the near field modulation and laser induced damage of beam sampling grating. Acta Physica Sinica, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [19] Near field modulation and laser induced damage of color separation gratings and combined color separation gratings-beam sampling gratings optical elements for use in inertial confinement fusion system. Acta Physica Sinica, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] YANG HONG-QIONG, YANG JIAN-LUN, WEN SHU-HUAI, WANG GEN-XING, GUO YU-ZHI, TANG ZHENG-YUAN, MU WEI-BING, MA CHI. DT FUEL AREAL DENSITY DIAGNOSTIC IN DIRECT-DRIVEN IMPLOSIONS. Acta Physica Sinica, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
Metrics
  • Abstract views:  5492
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  27 January 2022
  • Accepted Date:  26 February 2022
  • Available Online:  26 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回