Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties

Zhu Yu-Jie Jiang Tao Ye Xiao-Juan Liu Chun-Sheng

Citation:

Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties

Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng
PDF
HTML
Get Citation
  • Two-dimensional (2D) materials have aroused tremendous interest due to their great potential applications in electronic, optical, and mechanical devices. We theoretically design a new 2D material SiGeS by regularly arranging the Si-S-Ge skeleton of SiH3SGeH3. Based on first-principles calculation, the structure, stability, electronic properties, mechanical properties, and optical properties of SiGeS are systematically investigated. Monolayer SiGeS is found to be energetically, dynamically, and thermally stable. Remarkably, the SiGeS displays a unique negative Poisson’s ratio. Besides, the SiGeS is an indirect-semiconductor with a band gap of 1.95 eV. The band gap can be modulated effectively by applying external strains. An indirect-to-direct band gap transition can be observed when the tensile strain along the x axial or biaxial direction is greater than +3%, which is highly desirable for applications in optical and semiconductor technology. Moreover, pristine SiGeS has a high absorption coefficient (~105 cm–1) in a visible-to-ultraviolet region. Under tensile strain along the x axial direction, the absorption edge of SiGeS has a red shift, which makes it cover the whole region of solar spectrum. These intriguing properties make the SiGeS a competitive multifunctional material for nanomechanic and optoelectronic applications.
      Corresponding author: Liu Chun-Sheng, csliu@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974068).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [3]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [4]

    Zhu F F, Chen W F, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [5]

    Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942Google Scholar

    [6]

    Bai Y, Deng K, Kan E 2015 RSC Adv. 5 18352Google Scholar

    [7]

    Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [8]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [9]

    Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J, Baek J B 2015 Nat. Commun. 6 6486Google Scholar

    [10]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76Google Scholar

    [11]

    Srinivasu K, Modak B, Ghosh S K 2014 J. Phys. Chem. C 118 26479Google Scholar

    [12]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [13]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [14]

    Demirci S, Avazlı N, Durgun E, Cahangirov S 2017 Phys. Rev. B 95 115409Google Scholar

    [15]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [16]

    Jiang J W, Park H S 2014 Nat. Commun. 5 4727Google Scholar

    [17]

    Zhuang H L, Singh A K, Hennig R G 2013 Phys. Rev. B 87 165415Google Scholar

    [18]

    Wang H, Li X, Yang J 2016 ChemPhysChem 17 2100Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Liu H, Du Y, Deng Y, Ye P D 2015 Chem. Soc. Rev. 44 2732Google Scholar

    [21]

    Sun M, Schwingenschlögl U 2020 Phys. Rev. Appl. 14 044015Google Scholar

    [22]

    Chae K, Son Y W 2019 Nano Lett. 19 2694Google Scholar

    [23]

    Gao Z, Dong X, Li N, Ren J 2017 Nano Lett. 17 772Google Scholar

    [24]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [25]

    Wang B, König M, Bromley C J, Yoon B, Treanor M J, Garrido Torres J A, Caffio M, Grillo F, Früchtl H, Richardson N V, Esch F, Heiz U, Landman U, Schaub R 2017 J. Phys. Chem. C 121 9413Google Scholar

    [26]

    Khan M H, Moradi M, Dakhchoune M, Rezaei M, Huang S Q, Zhao J, Agrawal K V 2019 Carbon 153 458Google Scholar

    [27]

    Tian Y, Hu Z, Yang Y, Wang X, Chen X, Xu H, Wu Q, Ji W, Chen Y 2004 J. Am. Chem. Soc. 126 1180Google Scholar

    [28]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470Google Scholar

    [29]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123Google Scholar

    [30]

    Park J H, Park J C, Yun S J, Kim H, Luong D H, Kim S M, Choi S H, Yang W, Kong J, Kim K K, Lee Y H 2014 ACS Nano 8 8520Google Scholar

    [31]

    Beniwal S, Hooper J, Miller D P, Costa P S, Chen G, Liu S Y, Dowben P A, Sykes E C, Zurek E, Enders A 2017 ACS Nano 11 2486Google Scholar

    [32]

    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320Google Scholar

    [33]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538Google Scholar

    [34]

    Liu B, Fathi M, Chen L, Abbas A, Ma Y, Zhou C 2015 ACS Nano 9 6119Google Scholar

    [35]

    Finch M A, Van Dyke C H 1975 Inorg. Chem. 14 136Google Scholar

    [36]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [39]

    Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [40]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [41]

    Savrasov S Y, Savrasov D Y 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 16487Google Scholar

    [42]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [43]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [44]

    Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, Ganz E 2015 J. Am. Chem. Soc. 137 2757Google Scholar

    [45]

    Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B:Condens. Matter Mater. Phys. 90 045409Google Scholar

    [46]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393Google Scholar

    [47]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [48]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [49]

    Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T 2017 Physica E 87 228Google Scholar

    [50]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [51]

    Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [52]

    Yang J H, Zhang Y, Yin W J, Gong X G, Yakobson B I, Wei S H 2016 Nano Lett. 16 1110Google Scholar

    [53]

    Li F, Liu X, Wang Y, Li Y 2016 J. Mater. Chem. C 4 2155Google Scholar

    [54]

    Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482Google Scholar

    [55]

    Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835Google Scholar

    [56]

    Lang H, Zhang S, Liu Z 2016 Phys. Rev. B 94 235306Google Scholar

    [57]

    Rawat A, Jena N, Dimple D, De Sarkar A 2018 J. Mater. Chem. A 6 8693Google Scholar

    [58]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [59]

    Miao N, Xu B, Bristowe N C, Zhou J, Sun Z 2017 J. Am. Chem. Soc. 139 11125Google Scholar

    [60]

    Lin J H, Zhang H, Cheng X L, Miyamoto Y 2017 Phys. Rev. B 96 035438Google Scholar

    [61]

    Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar

    [62]

    Luo X, Wang G, Huang Y, Wang B, Yuan H, Chen H 2017 Phys. Chem. Chem. Phys. 19 28216Google Scholar

    [63]

    Lu P, Wu L, Yang C, Liang D, Quhe R, Guan P, Wang S 2017 Sci. Rep. 7 3912Google Scholar

  • 图 1  (a) SiH3SGeH3分子的结构; (b) 优化后SiGeS结构的俯视图和侧视图, 其中虚线矩形框代表其原胞; (c) SiGeS的声子谱; (d) 1000 K下SiGeS的总能量变化和10 ps后的结构快照

    Figure 1.  (a) Structure of SiH3SGeH3 molecule; (b) top and side views of the optimized structure of SiGeS, where the dashed rectangle represents the unit cell; (c) phono spectrum of SiGeS; (d) total energy evolution of SiGeS at 1000 K and the snapshot of the structure after 10 ps.

    图 2  SiGeS的(a)杨氏模量及(b)泊松比

    Figure 2.  (a) Young’s modulus and (b) Poisson’s ratio of SiGeS.

    图 3  (a) 单层SiGeS在沿x轴拉伸应变下的结构变化, 其中施加应变与结构变化分别使用蓝色实线箭头及紫色虚线箭头表示; 单层SiGeS在沿(b) x轴及(c) y轴应变下的机械响应

    Figure 3.  (a) Structure evolution of monolayer SiGeS under tensile strain along x. The applied strain and the structure evolution are marked by blue solid and purple dashed arrows, respectively; mechanical response of SiGeS under the strain along (b) x and (c) y

    图 4  SiGeS的(a)能带结构、PDOS及(b) ELF图

    Figure 4.  (a) Electronic structure, PDOS and (b) ELF profile of SiGeS.

    图 5  SiGeS在施加应变时的(a)带隙值及(b)在ηx+3%, ηx+4%, ηbi+3%ηbi+4%下的能带结构

    Figure 5.  (a) Band gaps of SiGeS under strain; (b) band structures of SiGeS under the strain of ηx+3%, ηx+4%, ηbi+3%, and ηbi+4%.

    图 6  SiGeS及其在ηx+4%ηbi+4%下的光吸收系数

    Figure 6.  Absorption coefficients of pristine SiGeS and SiGeS under the strain of ηx+4% and ηbi+4%.

    表 1  SiGeS的有效质量m*, 形变势常数$\left|{{E}}_{\text{1}}\right|$, 面内刚度C2D及载流子迁移率µ

    Table 1.  Effective mass m*, deformation potential constant $\left|{{E}}_{\text{1}}\right|$, in-plane stiffness C2D, and carrier mobility µ of SiGeS.

    DirectionCarrier
    type
    m*/m0$\left|{{E} }_{\text{1} }\right|$/
    eV
    C2D/
    (N·m–1)
    µ/
    (cm2·V–1·s–1)
    xElectron0.879.0289.7322.24
    Hole11.120.953.02
    yElectron1.109.8063.0915.41
    Hole2.535.846.38
    DownLoad: CSV
  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [3]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [4]

    Zhu F F, Chen W F, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [5]

    Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942Google Scholar

    [6]

    Bai Y, Deng K, Kan E 2015 RSC Adv. 5 18352Google Scholar

    [7]

    Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [8]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [9]

    Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J, Baek J B 2015 Nat. Commun. 6 6486Google Scholar

    [10]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76Google Scholar

    [11]

    Srinivasu K, Modak B, Ghosh S K 2014 J. Phys. Chem. C 118 26479Google Scholar

    [12]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [13]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [14]

    Demirci S, Avazlı N, Durgun E, Cahangirov S 2017 Phys. Rev. B 95 115409Google Scholar

    [15]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [16]

    Jiang J W, Park H S 2014 Nat. Commun. 5 4727Google Scholar

    [17]

    Zhuang H L, Singh A K, Hennig R G 2013 Phys. Rev. B 87 165415Google Scholar

    [18]

    Wang H, Li X, Yang J 2016 ChemPhysChem 17 2100Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Liu H, Du Y, Deng Y, Ye P D 2015 Chem. Soc. Rev. 44 2732Google Scholar

    [21]

    Sun M, Schwingenschlögl U 2020 Phys. Rev. Appl. 14 044015Google Scholar

    [22]

    Chae K, Son Y W 2019 Nano Lett. 19 2694Google Scholar

    [23]

    Gao Z, Dong X, Li N, Ren J 2017 Nano Lett. 17 772Google Scholar

    [24]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [25]

    Wang B, König M, Bromley C J, Yoon B, Treanor M J, Garrido Torres J A, Caffio M, Grillo F, Früchtl H, Richardson N V, Esch F, Heiz U, Landman U, Schaub R 2017 J. Phys. Chem. C 121 9413Google Scholar

    [26]

    Khan M H, Moradi M, Dakhchoune M, Rezaei M, Huang S Q, Zhao J, Agrawal K V 2019 Carbon 153 458Google Scholar

    [27]

    Tian Y, Hu Z, Yang Y, Wang X, Chen X, Xu H, Wu Q, Ji W, Chen Y 2004 J. Am. Chem. Soc. 126 1180Google Scholar

    [28]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470Google Scholar

    [29]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123Google Scholar

    [30]

    Park J H, Park J C, Yun S J, Kim H, Luong D H, Kim S M, Choi S H, Yang W, Kong J, Kim K K, Lee Y H 2014 ACS Nano 8 8520Google Scholar

    [31]

    Beniwal S, Hooper J, Miller D P, Costa P S, Chen G, Liu S Y, Dowben P A, Sykes E C, Zurek E, Enders A 2017 ACS Nano 11 2486Google Scholar

    [32]

    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320Google Scholar

    [33]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538Google Scholar

    [34]

    Liu B, Fathi M, Chen L, Abbas A, Ma Y, Zhou C 2015 ACS Nano 9 6119Google Scholar

    [35]

    Finch M A, Van Dyke C H 1975 Inorg. Chem. 14 136Google Scholar

    [36]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [39]

    Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [40]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [41]

    Savrasov S Y, Savrasov D Y 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 16487Google Scholar

    [42]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [43]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [44]

    Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, Ganz E 2015 J. Am. Chem. Soc. 137 2757Google Scholar

    [45]

    Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B:Condens. Matter Mater. Phys. 90 045409Google Scholar

    [46]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393Google Scholar

    [47]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [48]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [49]

    Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T 2017 Physica E 87 228Google Scholar

    [50]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [51]

    Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [52]

    Yang J H, Zhang Y, Yin W J, Gong X G, Yakobson B I, Wei S H 2016 Nano Lett. 16 1110Google Scholar

    [53]

    Li F, Liu X, Wang Y, Li Y 2016 J. Mater. Chem. C 4 2155Google Scholar

    [54]

    Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482Google Scholar

    [55]

    Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835Google Scholar

    [56]

    Lang H, Zhang S, Liu Z 2016 Phys. Rev. B 94 235306Google Scholar

    [57]

    Rawat A, Jena N, Dimple D, De Sarkar A 2018 J. Mater. Chem. A 6 8693Google Scholar

    [58]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [59]

    Miao N, Xu B, Bristowe N C, Zhou J, Sun Z 2017 J. Am. Chem. Soc. 139 11125Google Scholar

    [60]

    Lin J H, Zhang H, Cheng X L, Miyamoto Y 2017 Phys. Rev. B 96 035438Google Scholar

    [61]

    Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar

    [62]

    Luo X, Wang G, Huang Y, Wang B, Yuan H, Chen H 2017 Phys. Chem. Chem. Phys. 19 28216Google Scholar

    [63]

    Lu P, Wu L, Yang C, Liang D, Quhe R, Guan P, Wang S 2017 Sci. Rep. 7 3912Google Scholar

  • [1] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [3] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] Huang Shen-Yang, Zhang Guo-Wei, Wang Fan-Jie, Lei Yu-Chen, Yan Hu-Gen. Optical properties of two-dimensional black phosphorus. Acta Physica Sinica, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [5] Xiong Zi-Qian, Zhang Peng-Cheng, Kang Wen-Bin, Fang Wen-Yu. Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2. Acta Physica Sinica, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [6] Wang Chuang, Zhao Yong-Hong, Liu Yong. First-principles calculations of magnetic and optical properties of Ga1–xCrxSb (x = 0.25, 0.50, 0.75). Acta Physica Sinica, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [7] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [8] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [9] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [10] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [11] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [12] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [13] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [14] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [15] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [16] Li Xiao-Feng, Ji Guang-Fu, Peng Wei-Min, Shen Xiao-Meng, Zhao Feng. Elastic constants, electronic structure and optical properties of solid krypton under pressure by first-principles calculations. Acta Physica Sinica, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [17] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [18] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [19] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  2777
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2022
  • Accepted Date:  05 April 2022
  • Available Online:  22 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回