Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Forward model of metal magnetic memory testing based on equivalent surface magnetic charge theory

Luo Xu Wang Li-Hong Lü Liang Cao Shu-Feng Dong Xue-Cheng Zhao Jian-Guo

Citation:

Forward model of metal magnetic memory testing based on equivalent surface magnetic charge theory

Luo Xu, Wang Li-Hong, Lü Liang, Cao Shu-Feng, Dong Xue-Cheng, Zhao Jian-Guo
PDF
HTML
Get Citation
  • The magnetic dipole theory has been widely and successfully used to qualitatively analyze the testing signals of metal magnetic memory (MMM) testing. However, the magnetic charge density of the existing models is always an assumed value distributed uniformly or linearly along the defect section or in a stress concentration area, as a result the existing models are unsuitable for quantitatively analyzing the metal magnetic memory signal. In this work, a new forward model of MMM testing is established by considering the influence of uneven stress on magnetic charge density distribution, discretizing the specimen into numbers of micro elements firstly, assuming that the magnetic characteristic parameters of each element are evenly distributed and the magnetic charge density changes with stress in each element which can be determined by combining the modified magneto-mechanical model and the classical theory of magnetic charges. Compared with the experimental results of hole defect and crack defect specimen, the theoretical results calculated by the proposed model prove to be in good agreement with the testing results both qualitatively and quantitatively. Consequently, the proposed model is a new theoretical and quantitative model for analyzing the experimental change rule of metal magnetic memory testing. Then, the effects of stress concentration and macroscopic defects on the distribution of magnetic field are analyzed, showing that when there is only a stress concentration in the specimen, the horizontal component is negative valley, and the normal component changes from negative to positive valley peak in the stress concentration area; when there is a crack defect in the specimen, the distribution of magnetic field is just opposite to that when there is only a stress concentration. The distribution characteristics of the magnetic field can be used to judge the damage type in the specimen. Moreover, taking crack defect for example, the horizontal and normal component of magnetic field and their characteristic parameters changing with the size parameters of crack defect, such as width, length, depth and buried depth of crack defect, are analyzed in detail. The results show that the ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ increase lineally with the increase of the width of crack, $\Delta {H_x}$ and $\Delta {H_z}$increase with the increase of the length and depth of crack, but gradually decrease with the increase of defect buried depth.
      Corresponding author: Luo Xu, luoxu@cdut.edu.cn
    • Funds: Project Supported by the Science and Technology Program of Sichuan Province, China (Grant Nos. 2021YFS0305, 2022YFQ0061).
    [1]

    Dubov A A 1997 Met. Sci. Heat Treat. 39 401Google Scholar

    [2]

    Wang Z D, Yao K, Deng B, Ding K Q 2010 NDT and E Int. 43 354Google Scholar

    [3]

    Wang Z D, Yao K, Deng B, Ding K Q 2010 NDT and E Int. 43 513Google Scholar

    [4]

    万强, 李思忠, 汤紫峰 2011 无损检测 33 12

    Wang Q, Li S Z, Tang Z F 2011 Nondestr. Test. 33 12

    [5]

    Leng J C, Xu M Q, Li J W 2010 Chin. J. Mech. Eng. 23 532Google Scholar

    [6]

    Leng J C, Xing H Y, Zhou G Q, Gao Y T 2013 Insight 55 498Google Scholar

    [7]

    徐明秀, 尤天庆, 徐敏强, 樊久铭, 李立 2015 中南大学学报(自然科学版) 46 1215Google Scholar

    Xu M X, You T Q, Xu M Q, Fan J M, Li L 2015 J. Cent. South Univ. 46 1215Google Scholar

    [8]

    Shi P P, Zheng X J 2016 Nondestr. Test. Eval. 31 45Google Scholar

    [9]

    时朋朋, 郝帅 2021 物理学报 70 034101Google Scholar

    Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101Google Scholar

    [10]

    孙乐 2007 博士学位论文 (兰州: 兰州大学)

    Sun L 2007 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [11]

    周浩淼 2007 博士学位论文 (兰州: 兰州大学)

    Zhou H M 2007 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [12]

    Zhou H M, Zhou Y H, Zheng X J, Ye Q, Wei J 2009 J. Magn. Magn. Mater. 321 281Google Scholar

    [13]

    时朋朋 2017 博士学位论文 (西安: 西安电子科技大学)

    Shi P P 2017 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [14]

    Shi P P 2020 J. Magn. Magn. Mater. 512 166980Google Scholar

    [15]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [16]

    罗旭, 朱海燕, 丁雅萍 2019 物理学报 68 187501Google Scholar

    Luo X, Zhu H Y, Ding Y P 2019 Acta Phys. Sin. 68 187501Google Scholar

    [17]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Liu J X, Han Y W 2017 Acta Phys. Sin. 66 107501Google Scholar

    [18]

    周国华, 肖昌汉, 刘胜道, 高俊吉 2009 电工技术学报 24 1Google Scholar

    Zhou G H, Xiao C H, Liu S D, Gao J J 2009 Trans. Chin. Elect. Soc. 24 1Google Scholar

    [19]

    孙阳 2018 硕士学位论文 (西安: 长安大学)

    Sun Y 2018 M. S. Thesis (Xi’an: Chang’ an University) (in Chinese)

    [20]

    周耀忠, 张国友 2004 舰船磁场分析计算 (北京: 国防工业出版社) 第187—195页

    Zhou Y Z, Zhang G Y 2004 Analysis and Calculation of Ship Magnetic Field (Beijing: National Defense Industry Press) pp187–195 (in Chinese)

    [21]

    Maciej R, Gawrilenko P 2008 NDT and E Int. 41 507Google Scholar

    [22]

    Maciej R, Andrzej R, Michal B 2013 Meccanica 48 45Google Scholar

  • 图 1  任意形状六面体单元及局部坐标示意图 (a) 任意形状六面体单元示意图; (b) 六面体单元表面${S_j}$局部坐标示意图

    Figure 1.  Sketch of an irregular hexahedron element and its local coordinates: (a) Sketch of an irregular hexahedron element; (b) local coordinates of the surface ${S_j}$ of irregular hexahedron element .

    图 2  任意四边形面积分示意图 (a) 平行于x轴, 任意四边形分域积分示意图; (b) 平行于y轴, 任意四边形分域积分示意图

    Figure 2.  Sketch of surface integral of an irregular quadrangle: (a) Surface integral of an irregular quadrangle parallel to the x axis; (b) surface integral of an irregular quadrangle parallel to the y axis.

    图 3  基于面磁荷密度的金属磁记忆正演计算流程

    Figure 3.  Calculation flowchart of metal magnetic memory forward analysis based on surface magnetic charge density.

    图 4  含裂纹缺陷拉伸试件尺寸及网格划分示意图 (a) 试件结构及尺寸; (b) 试件网格划分

    Figure 4.  Shape, sizes and finite element meshing of the specimen with crack defect: (a) Shape and sizes of the specimen; (b) finite element meshing of the specimen.

    图 5  不同提离高度条件下试件表面${H_x}$${H_z}$计算结果 (a) ${H_x}$; (b) ${H_z}$

    Figure 5.  Calculation of ${H_x}$ and ${H_z}$ with different lift off: (a) ${H_x}$; (b) ${H_z}$.

    图 6  文献[21]中含圆孔缺陷拉伸试样结构及尺寸示意图

    Figure 6.  Shape and sizes of the specimen with hole defect in Ref. [21].

    图 7  含圆孔缺陷拉伸试样表面磁场分布理论计算结果与实验结果对比 (a)实验测试的${H_x}$分布情况; (b) 实验测试的${H_y}$分布情况; (c) 实验测试的${H_z}$分布情况; (d) 理论计算的${H_x}$分布情况; (e) 理论计算的${H_y}$分布情况; (f) 理论计算的${H_z}$分布情况

    Figure 7.  Comparison between theoretical results and experimental results of magnetic field distribution of the specimen with hole defect: (a) ${H_x}$ of experimental results; (b) ${H_y}$ of experimental results; (c) ${H_z}$ of experimental results; (d) ${H_x}$ of theoretical results; (e) ${H_y}$ of theoretical results; (f) ${H_z}$ of theoretical results.

    图 8  文献[22]中裂纹缺陷拉伸试样示意图

    Figure 8.  Shape and sizes of the specimen with crack defect in Ref. [22].

    图 9  含裂纹缺陷拉伸试样表面磁场分布理论计算结果与实验结果对比 (a) 实验测试的${H_x}$分布情况; (b) 实验测试的${H_y}$分布情况; (c) 实验测试的${H_z}$分布情况; (d) 理论计算的${H_x}$分布情况; (e) 理论计算的${H_y}$分布情况; (f) 理论计算的${H_z}$分布情况

    Figure 9.  Comparison between theoretical results and experimental results of magnetic field distribution of the specimen with crack defect: (a) ${H_x}$ of experimental results; (b) ${H_y}$ of experimental results; (c) ${H_z}$ of experimental results; (d) ${H_x}$ of theoretical results; (e) ${H_y}$ of theoretical results; (f) ${H_z}$ of theoretical results.

    图 10  应力集中与宏观裂纹缺陷对试件表面磁场分布的影响对比 (a) 应力集中区域${H_x}$分布情况; (b) 宏观裂纹缺陷${H_x}$分布情况; (c) 应力集中区域${H_z}$分布情况; (d) 宏观裂纹缺陷${H_z}$分布情况

    Figure 10.  Comparison of effects of stress concentration and macroscopic crack defect on the distribution of magnetic field distribution: (a) ${H_x}$ of stress concentration; (b) ${H_x}$ of macroscopic crack defects; (c) ${H_z}$ of stress concentration; (d) ${H_z}$ of macroscopic crack defects.

    图 11  应力对裂纹缺陷试件表面${H_x}$${H_z}$的影响 (a) 应力对裂纹缺陷试件表面${H_x}$的影响; (b) 应力对裂纹缺陷试件表面${H_z}$的影响

    Figure 11.  Influence of stress on ${H_x}$ and ${H_z}$ of the specimen with macroscopic crack defect: (a) Influence of stress on ${H_x}$; (b) influence of stress on ${H_z}$.

    图 12  磁记忆检测信号特征参数 (a) 与磁场水平分量${H_x}$相关的特征值; (b) 磁场法向分量${H_z}$相关的特征值

    Figure 12.  Characteristic parameters of magnetic memory detection signal: (a) Characteristic parameters of ${H_x}$; (b) characteristic parameters of ${H_z}$.

    图 13  槽形缺陷宽度${W_{\text{c}}}$对磁场分布的影响 (a) ${H_x}$随缺陷宽度${W_{\text{c}}}$变化情况; (b) ${H_z}$随缺陷宽度${W_{\text{c}}}$变化情况; (c) $\Delta {H_x}$$\Delta {H_z}$随缺陷宽度${W_{\text{c}}}$变化情况; (d) ${W_{\Delta {H_x}}}$${W_{\Delta {H_z}}}$随缺陷宽度${W_{\text{c}}}$变化情况

    Figure 13.  Influence of crack defect width ${W_{\text{c}}}$ on magnetic field distribution: (a) Variation of ${H_x}$ with ${W_{\text{c}}}$; (b) variation of ${H_z}$ with ${W_{\text{c}}}$; (c) variation of $\Delta {H_x}$ and $\Delta {H_z}$ with ${W_{\text{c}}}$; (d) variation of ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ with ${W_{\text{c}}}$.

    图 14  槽形缺陷长度${L_{\text{c}}}$对磁场分布的影响 (a) ${H_x}$随缺陷长度${L_{\text{c}}}$变化情况; (b) ${H_z}$随缺陷长度${L_{\text{c}}}$变化情况; (c) $\Delta {H_x}$$\Delta {H_z}$随缺陷长度${L_{\text{c}}}$变化情况; (d) ${W_{\Delta {H_x}}}$${W_{\Delta {H_z}}}$随缺陷长度${L_{\text{c}}}$变化情况

    Figure 14.  Influence of crack defect lengthen ${L_{\text{c}}}$ on magnetic field distribution: (a) Variation of ${H_x}$ with ${L_{\text{c}}}$; (b) variation of ${H_z}$ with ${L_{\text{c}}}$; (c) variation of $\Delta {H_x}$ and $\Delta {H_z}$ with ${L_{\text{c}}}$; (d) variation of ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ with Lc.

    图 15  槽形缺陷深度${D_{\text{c}}}$对磁场分布的影响 (a) ${H_x}$随缺陷深度${D_{\text{c}}}$变化情况; (b) ${H_z}$随缺陷深度${D_{\text{c}}}$变化情况; (c) $\Delta {H_x}$$\Delta {H_z}$随缺陷深度${D_{\text{c}}}$变化情况; (d)${W_{\Delta {H_x}}}$${W_{\Delta {H_z}}}$随缺陷深度${D_{\text{c}}}$变化情况

    Figure 15.  Influence of crack defect depth ${D_{\text{c}}}$ on magnetic field distribution: (a) Variation of ${H_x}$ with ${D_{\text{c}}}$; (b) variation of ${H_z}$ with ${D_{\text{c}}}$; (c) variation of $\Delta {H_x}$ and $\Delta {H_z}$ with ${D_{\text{c}}}$; (d) variations of ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ with ${D_{\text{c}}}$.

    图 16  槽形缺陷埋深${B_{\text{c}}}$对磁场分布的影响 (a) ${H_x}$随缺陷埋深${B_{\text{c}}}$变化情况; (b) ${H_z}$随缺陷埋深${B_{\text{c}}}$变化情况; (c) $\Delta {H_x}$$\Delta {H_z}$随缺陷埋深${B_{\text{c}}}$变化情况; (d) ${W_{\Delta {H_x}}}$${W_{\Delta {H_z}}}$随缺陷埋深${B_{\text{c}}}$变化情况

    Figure 16.  Influence of crack defect buried depth ${B_{\text{c}}}$ on magnetic field distribution: (a) Variation of ${H_x}$ with ${B_{\text{c}}}$; (b) variation of ${H_z}$ with ${B_{\text{c}}}$; (c) variation of $\Delta {H_x}$ and $\Delta {H_z}$ with ${B_{\text{c}}}$; (d) variation of ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ with ${B_{\text{c}}}$.

    表 1  不同正演模型计算结果与实验测试结果对比

    Table 1.  Comparison of magnetic field distribution of specimen with hole defect calculated by different models.

    磁场分量实验结果[21]文献[13]图3.9
    结果
    本文模型计算
    结果
    ${H_x}$/(A·m–1)90—13080—14070 —140
    ${H_y}$/(A·m–1)–50—10–40—10–50—20
    ${H_z}$/(A·m–1)–70—20–70—20–60—20
    DownLoad: CSV

    表 2  不同正演模型计算含裂纹缺陷试件结果与实验测试结果对比

    Table 2.  Comparison of magnetic field distribution of specimen with crack defect calculated by different models

    磁场分量实验结果[22]文献[13]图3.28
    中的结果
    本文模型
    计算结果
    ${H_x}$/(A·m–1)–90—130–400—40060—140
    ${H_y}$/(A·m–1)–50—10–200—200–60—30
    ${H_z}$/(A·m–1)–70—20–500—500–80—80
    DownLoad: CSV
  • [1]

    Dubov A A 1997 Met. Sci. Heat Treat. 39 401Google Scholar

    [2]

    Wang Z D, Yao K, Deng B, Ding K Q 2010 NDT and E Int. 43 354Google Scholar

    [3]

    Wang Z D, Yao K, Deng B, Ding K Q 2010 NDT and E Int. 43 513Google Scholar

    [4]

    万强, 李思忠, 汤紫峰 2011 无损检测 33 12

    Wang Q, Li S Z, Tang Z F 2011 Nondestr. Test. 33 12

    [5]

    Leng J C, Xu M Q, Li J W 2010 Chin. J. Mech. Eng. 23 532Google Scholar

    [6]

    Leng J C, Xing H Y, Zhou G Q, Gao Y T 2013 Insight 55 498Google Scholar

    [7]

    徐明秀, 尤天庆, 徐敏强, 樊久铭, 李立 2015 中南大学学报(自然科学版) 46 1215Google Scholar

    Xu M X, You T Q, Xu M Q, Fan J M, Li L 2015 J. Cent. South Univ. 46 1215Google Scholar

    [8]

    Shi P P, Zheng X J 2016 Nondestr. Test. Eval. 31 45Google Scholar

    [9]

    时朋朋, 郝帅 2021 物理学报 70 034101Google Scholar

    Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101Google Scholar

    [10]

    孙乐 2007 博士学位论文 (兰州: 兰州大学)

    Sun L 2007 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [11]

    周浩淼 2007 博士学位论文 (兰州: 兰州大学)

    Zhou H M 2007 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [12]

    Zhou H M, Zhou Y H, Zheng X J, Ye Q, Wei J 2009 J. Magn. Magn. Mater. 321 281Google Scholar

    [13]

    时朋朋 2017 博士学位论文 (西安: 西安电子科技大学)

    Shi P P 2017 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [14]

    Shi P P 2020 J. Magn. Magn. Mater. 512 166980Google Scholar

    [15]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [16]

    罗旭, 朱海燕, 丁雅萍 2019 物理学报 68 187501Google Scholar

    Luo X, Zhu H Y, Ding Y P 2019 Acta Phys. Sin. 68 187501Google Scholar

    [17]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Liu J X, Han Y W 2017 Acta Phys. Sin. 66 107501Google Scholar

    [18]

    周国华, 肖昌汉, 刘胜道, 高俊吉 2009 电工技术学报 24 1Google Scholar

    Zhou G H, Xiao C H, Liu S D, Gao J J 2009 Trans. Chin. Elect. Soc. 24 1Google Scholar

    [19]

    孙阳 2018 硕士学位论文 (西安: 长安大学)

    Sun Y 2018 M. S. Thesis (Xi’an: Chang’ an University) (in Chinese)

    [20]

    周耀忠, 张国友 2004 舰船磁场分析计算 (北京: 国防工业出版社) 第187—195页

    Zhou Y Z, Zhang G Y 2004 Analysis and Calculation of Ship Magnetic Field (Beijing: National Defense Industry Press) pp187–195 (in Chinese)

    [21]

    Maciej R, Gawrilenko P 2008 NDT and E Int. 41 507Google Scholar

    [22]

    Maciej R, Andrzej R, Michal B 2013 Meccanica 48 45Google Scholar

  • [1] Chen Chong, Ma Ming-Yuan, Pan Feng, Song Cheng. Magneto-acoustic coupling: Physics, materials, and devices. Acta Physica Sinica, 2024, 73(5): 058502. doi: 10.7498/aps.73.20231908
    [2] Wang Si-Yuan, Liang Tian-Shou, Shi Peng-Peng. Mechanism of strain-induced magnetic properties changes for metal magnetic memory technology on atomic scale. Acta Physica Sinica, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [3] Shi Peng-Peng, Hao Shuai. Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method. Acta Physica Sinica, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [4] Luo Xu, Zhu Hai-Yan, Ding Ya-Ping. A modified model of magneto-mechanical effect on magnetization in ferromagnetic materials. Acta Physica Sinica, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [5] Liu Juan, Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic properties and mechano-magnetic coupling effects in transition metal-doped armchair boron nitride nanoribbons. Acta Physica Sinica, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [6] Liu Qing-You, Luo Xu, Zhu Hai-Yan, Han Yi-Wei, Liu Jian-Xun. Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model. Acta Physica Sinica, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [7] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [8] Yang Li-Jian, Liu Bin, Gao Song-Wei, Chen Li-Jia. First-principles caculation and experimental study of metal magnetic memory effects. Acta Physica Sinica, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [9] Zhang Peng, Liu Lin, Chen Wei-Min. Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring. Acta Physica Sinica, 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [10] Xu Xiao-Yong, Qian Li-Jie, Hu Jing-Guo. Magnetoresistance induced by the stress fieldin ferromagnetic multilayer. Acta Physica Sinica, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [11] Ding Ling-Yun, Gong Zhong-Liang, Huang Ping. Interfacial friction calculation based on the coupled-oscillator model. Acta Physica Sinica, 2008, 57(10): 6500-6506. doi: 10.7498/aps.57.6500
    [12] Zheng Hong-Xing, Liu Jian, Xia Ming-Xu, Li Jian-Guo. Intermartensitic transformation of Ni-Fe-Ga magnetic shape memory alloys. Acta Physica Sinica, 2005, 54(4): 1719-1721. doi: 10.7498/aps.54.1719
    [13] Shao Zhi-Yuan, Lin Guang-Ming, Lan Tu, Zhong Wei-Rong. . Acta Physica Sinica, 2002, 51(10): 2362-2368. doi: 10.7498/aps.51.2362
    [14] LIU ZHU-HONG, HU FENG-XIA, WANG WEN-HONG, CHEN JING-LAN, WU GUANG-HENG, GAO SHU-XIA, AO LING. INVESTIGATION ON MARTENSITIC TRANSFORMATION AND FIELD-INDUCED TWO-WAY SHAPE MEMORY EFFECT OF Ni-Mn-Ga ALLOY. Acta Physica Sinica, 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
    [15] LI JUN, CHEN QING-MING, LI ZAI-GUANG, J.J.PAN. A MODEL OF THE MAGNETICALLY CONFINED SPUTTERING DISCHARGE USED FOR METAL VAPOR LASERS. Acta Physica Sinica, 1997, 46(8): 1479-1486. doi: 10.7498/aps.46.1479
    [16] ZHONG LI-JUN, TAO RUI-BAO. SYMMETRY THEORY OF THE MAGNETIC PHASE TRANSITION OF FeRh ALLOY. Acta Physica Sinica, 1992, 41(12): 2003-2007. doi: 10.7498/aps.41.2003
    [17] CHEN REN, WANG YANG-PU. THE S=l/2 FERROMAGNETIC THEORY HEISENBERG MODEL TREATED BY STOCHASTIC QUANTIZATION. Acta Physica Sinica, 1989, 38(4): 614-618. doi: 10.7498/aps.38.614
    [18] SHEN JUE-LIAN. SECOND ORDER PHASE TRANSFORMATION OF MAGNETIC CRYSTALS AND MAGNETIC STRUCTURE OF METALS OF THE LANTHANUM SERIES. Acta Physica Sinica, 1966, 22(1): 94-110. doi: 10.7498/aps.22.94
    [19] LI YIN-YUAN, LENG ZHONG-AHG, PAN SHOU-FU. THEORY OF THE PARAMETRIC OSCILLATION OF MAGNETOACOUSTIC MODES. Acta Physica Sinica, 1960, 16(8): 448-461. doi: 10.7498/aps.16.448
    [20] H. C. Lee. ON THE HERMITEAN OPERATORS IN QUANTUM MECHANICS. Acta Physica Sinica, 1946, 6(2): 86-99. doi: 10.7498/aps.6.86
Metrics
  • Abstract views:  4385
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2022
  • Accepted Date:  05 April 2022
  • Available Online:  26 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回