Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model

Liu Qing-You Luo Xu Zhu Hai-Yan Han Yi-Wei Liu Jian-Xun

Citation:

Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model

Liu Qing-You, Luo Xu, Zhu Hai-Yan, Han Yi-Wei, Liu Jian-Xun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Plastic deformation is one of the most important features that affect the hysteresis magnetic properties of steels, because it changes the dislocation density and affects domain-wall movement and pinning. In order to model the effect of plastic deformation on the magnetic properties, the prevailing Jiles-Atherton (J-A) theory is extensively used. However, the J-A models in a series of papers published by Jiles et al. are not completely consistent. As a result, there exists no uniform formula of magneto-plastic model established by different researchers, based on different J-A models, and various versions given by different mathematic expressions of magneto-plastic model often create difficulty in discriminating the accuracies and effectivenesses of the analyzed results. Therefore, it is necessary to establish an accurate and reasonable magneto-plastic model. In this paper, on the basis of magnetization mechanism of ferrimagnet and plastic deformation model, the effects of plastic deformation on the magnetic characteristic parameters adopted in magneto-plastic model, such as dislocation density, pinning coefficient and scaling constant, are analyzed and the relationship between them is first established. Then, by contrasting the fitting formula of the anhysteretic magnetization curve, the energy conservation equation and the effective magnetic field equation established by different researchers, several queries are proposed, and the irrationality and inaccuracy of the existing magneto-plastic model are elucidated, such as the mixing of anhysteresis magnetization and magnetization, the unreasonably regarding the irreversible magnetization energy as actual total magnetization energy. Thus, the energy conservation equation, the effective magnetic field equation and the anhysteretic magnetization equation are modified, and the differential expression of the magneto-plastic model is re-derived finally. Comparing the results calculated by the existing magneto-plastic models with the experimental results, it is seen indeed that a more sharp change of magnetization appears at small plastic deformation, then, the values of magnetization decrease more slowly with the increase of plastic deformation than those from the models respectively proposed by Li Jian-Wei, Leng Jian-Cheng and Wang Zheng-Dao; the saturation magnetization and residual magnetization decrease with the increase of plastic deformation, the coercive force is increased oppositely and the trend to reach the saturation magnetization becomes gentler, which is more exactly consonant with experiment observation than that calculated by the Sablik's model; additionally, the hysteresis loops of the plastically deformed carbon-steel samples calculated by the modified magneto-plastic model are also in better agreement with the experimental results than those from the existing models. Consequently, the modification is effective, and the modified magneto-plastic model is more accurate to simulate the plastic deformation effect on the magnetic property of ferromagnetic material.
      Corresponding author: Luo Xu, 402585133@qq.com
    • Funds: Project supported by the Major Program of Sichuan Province Science and Technology Plan, China (Grant No. 2015SZ0010), the Key Technology Research and Development Program of Sichuan Province, China (Grant No. 2013GZ0150), and the Scientific Research Foundation of Sichuan Province, China (Grant No. 2014GZ0121).
    [1]

    Li Z, Li Q M, Li C Y, Sun Q Q, Lou J 2011 Proc. Chin. Soc. Elect. Eng. 31 124 (in Chinese) [李贞, 李庆民, 李长云, 孙秋芹, 娄杰 2011 中国电机工程学报 31 124]

    [2]

    Jiles D C, Atherton D L 1984 J. Appl. Phys. 55 2115

    [3]

    Jiles D C, Atherton D L 1986 J.Magn. Magn. Mater. 61 48

    [4]

    Jiles D C 1992 IEEE Trans. Magn. 28 27

    [5]

    Jiles D C, Thoelke J B 1989 IEEE Trans. Magn. 25 3928

    [6]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [7]

    Jiles D C 1995 J.Appl. Phys. 28 1537

    [8]

    Jiles D C 1994 J.Appl. Phys. 76 5849

    [9]

    Jiles D C, Li L 2004 J. Appl. Phys. 95 7058

    [10]

    Sablik M J 2004 IEEE Trans. Magn. 40 3219

    [11]

    Sablik M J, Geerts W J, Smith K, Gregory A, Moore C 2010 IEEE Trans. Magn. 46 491

    [12]

    Sablik M J, Landgraf F J G, Paolo S Comparing grain size and dislocation density effects for hysteresis loops with the same maximum flux density in a magnetic hysteresis model https://wwwresearchgatenet /publication/265264412 [2017-03-08]

    [13]

    Sablik M J, Rios S, Landgraf F J G 2005 J. Appl. Phys. 97 10E518

    [14]

    Suliga M, Borowik L, Chwastek K 2015 Arch. Metall. Mater. 60 409

    [15]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928

    [16]

    Li J W, Xu M Q, Leng J C, Xu M X 2012 J.Appl. Phys. 111 063909

    [17]

    Leng J C, Liu Y, Zhou G Q 2013 NDT&E Int. 55 42

    [18]

    Jiang P, Wang W 2009 Fundamentals of Engineering Mechanics(II): Mechanics of Materials (Beijing: Higher Education Press) pp61-63 (in Chinese) [蒋平, 王维 2009 工程力学基础(II): 材料力学(北京: 高等教育出版社) 第61—63页].

    [19]

    Doubov A A K V G 2001 Proceedings of the Second International Conference ''Diagnostics of the Equipment and Constructions with Usage of Metal Magnetic Memory'' Moscow, Russia, February 26-28, 2001 p1

    [20]

    Jiles D C 2000 J.Appl. Phys. 21 1196

    [21]

    Makar J M, Tanner B K 1998 J. Magn. Magn. Mater. 184 193

    [22]

    Iordache V E, Hug E, Buiron N 2003 Mat.Sci. Eng. A-Struct. 359 62

    [23]

    Makar J M, Tanner B K 2000 J. Magn. Magn. Mater. 222 291

  • [1]

    Li Z, Li Q M, Li C Y, Sun Q Q, Lou J 2011 Proc. Chin. Soc. Elect. Eng. 31 124 (in Chinese) [李贞, 李庆民, 李长云, 孙秋芹, 娄杰 2011 中国电机工程学报 31 124]

    [2]

    Jiles D C, Atherton D L 1984 J. Appl. Phys. 55 2115

    [3]

    Jiles D C, Atherton D L 1986 J.Magn. Magn. Mater. 61 48

    [4]

    Jiles D C 1992 IEEE Trans. Magn. 28 27

    [5]

    Jiles D C, Thoelke J B 1989 IEEE Trans. Magn. 25 3928

    [6]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [7]

    Jiles D C 1995 J.Appl. Phys. 28 1537

    [8]

    Jiles D C 1994 J.Appl. Phys. 76 5849

    [9]

    Jiles D C, Li L 2004 J. Appl. Phys. 95 7058

    [10]

    Sablik M J 2004 IEEE Trans. Magn. 40 3219

    [11]

    Sablik M J, Geerts W J, Smith K, Gregory A, Moore C 2010 IEEE Trans. Magn. 46 491

    [12]

    Sablik M J, Landgraf F J G, Paolo S Comparing grain size and dislocation density effects for hysteresis loops with the same maximum flux density in a magnetic hysteresis model https://wwwresearchgatenet /publication/265264412 [2017-03-08]

    [13]

    Sablik M J, Rios S, Landgraf F J G 2005 J. Appl. Phys. 97 10E518

    [14]

    Suliga M, Borowik L, Chwastek K 2015 Arch. Metall. Mater. 60 409

    [15]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928

    [16]

    Li J W, Xu M Q, Leng J C, Xu M X 2012 J.Appl. Phys. 111 063909

    [17]

    Leng J C, Liu Y, Zhou G Q 2013 NDT&E Int. 55 42

    [18]

    Jiang P, Wang W 2009 Fundamentals of Engineering Mechanics(II): Mechanics of Materials (Beijing: Higher Education Press) pp61-63 (in Chinese) [蒋平, 王维 2009 工程力学基础(II): 材料力学(北京: 高等教育出版社) 第61—63页].

    [19]

    Doubov A A K V G 2001 Proceedings of the Second International Conference ''Diagnostics of the Equipment and Constructions with Usage of Metal Magnetic Memory'' Moscow, Russia, February 26-28, 2001 p1

    [20]

    Jiles D C 2000 J.Appl. Phys. 21 1196

    [21]

    Makar J M, Tanner B K 1998 J. Magn. Magn. Mater. 184 193

    [22]

    Iordache V E, Hug E, Buiron N 2003 Mat.Sci. Eng. A-Struct. 359 62

    [23]

    Makar J M, Tanner B K 2000 J. Magn. Magn. Mater. 222 291

  • [1] Chu Xin-Bo, Jin Zuan-Ming, Wu Xu, Li Jing-Nan, Shen Yang, Wang Ruo-Yu, Ji Bing-Yu, Li Zhang-Shun, Peng Yan. Pulsed far-infrared radiation of ferromagnetic heterojunction and its photothermal regulation. Acta Physica Sinica, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] Luo Xu, Wang Li-Hong, Lü Liang, Cao Shu-Feng, Dong Xue-Cheng, Zhao Jian-Guo. Forward model of metal magnetic memory testing based on equivalent surface magnetic charge theory. Acta Physica Sinica, 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [3] Shi Peng-Peng, Hao Shuai. Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method. Acta Physica Sinica, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [4] Luo Xu, Zhu Hai-Yan, Ding Ya-Ping. A modified model of magneto-mechanical effect on magnetization in ferromagnetic materials. Acta Physica Sinica, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [5] Li De-Ming, Fang Song-Ke, Tong Jin-Shan, Su Jian, Zhang Na, Song Gui-Lin. Effects of Ca2+ doping on dielectric, ferromagnetic properties and magnetic phase transition of SmFeO3 ceramics. Acta Physica Sinica, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [6] Wang Hong-Ming, Zhu Yi, Li Gui-Rong, Zheng Rui. Plasticity and microstructure of AZ31 magnesium alloy under coupling action of high pulsed magnetic field and external stress. Acta Physica Sinica, 2016, 65(14): 146101. doi: 10.7498/aps.65.146101
    [7] Song Gui-Lin, Su Jian, Zhang Na, Chang Fang-Gao. Dielectric properties and high temperature magnetic behavior on multiferroics Bi1-xCaxFeO3 ceramics. Acta Physica Sinica, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [8] Li Zheng-Hua, Li Xiang. Micromagnetic modeling of L10-ordered FePtmagnetic thin films. Acta Physica Sinica, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [9] Song Gui-Lin, Luo Yan-Ping, Su Jian, Zhou Xiao-Hui, Chang Fang-Gao. Effects of Dy and Co co-substitution on the magnetic properties and TC of BiFeO3 ceramics. Acta Physica Sinica, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [10] Zhang Peng, Liu Lin, Chen Wei-Min. Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring. Acta Physica Sinica, 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [11] Zhu Jie, Su Yuan-Chang, Pan Jing, Feng Guo-Lin. Gaussian type inhomogeneous stress and strain effects on the magnetic properties in ferromagnetic thin films. Acta Physica Sinica, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [12] Wang Guang-Jian, Jiang Cheng-Bao. The coercivity of the high temperature magnets Sm(CobalFe0.1Cu0.1Zr0.033)6.9 alloys. Acta Physica Sinica, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [13] Song Gui-Lin, Zhou Xiao-Hui, Su Jian, Yang Hai-Gang, Wang Tian-Xing, Chang Fang-Gao. Effects of Gd and Co doping on the electrical and ferromagnetism properties of BiFeO3 ceramics. Acta Physica Sinica, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [14] Deng Ya, Zhao Guo-Ping, Bo Niao. The analytical investigation of the magnetic orientation and hysteresis loop in exchange-spring magnetic multilayers. Acta Physica Sinica, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [15] Xian Cheng-Wei, Zhao Guo-Ping, Zhang Qing-Xiang, Xu Jin-Song. Magnetization reversal of perpendicularly orientated Nd2Fe14B/α-Fe trilayer. Acta Physica Sinica, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [16] Zhang Cui-Ling, Zheng Rui-Lun, Teng Jiao. Influence of NiFeNb seed layer on hysteresis loops of permalloy films. Acta Physica Sinica, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [17] Zheng Wu, Wang Ai-Ling, Jiang Hong-Wei, Zhou Yun-Song, Li Tong. Magnetic properties of Co-Pt-C grain films. Acta Physica Sinica, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [18] Xiao Chun-Tao, Cao Xian-Sheng. Preisach analysis of La0.67Pb0.33MnO3. Acta Physica Sinica, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [19] Zhang Hong-Wei, Rong Chuan-Bing, Zhang Jian, Zhang Shao-Ying, Shen Bao-Gen. Simulation of magnetization behaviour in nanocrystalline Pr2Fe14B by micromagnetic finite element method. Acta Physica Sinica, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [20] WANG WEN-HU, LI SHI-LIANG, CHEN ZHAO-JIA, WEN HAI-HU, XIONG YU-FENG. ANOMALOUS MAGNETIZATION PEAK EFFECT IN Bi2Sr2CaCu2O8 SINGLE CRYSTALS. Acta Physica Sinica, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
Metrics
  • Abstract views:  7978
  • PDF Downloads:  383
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2016
  • Accepted Date:  10 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回