Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Ca2+ doping on dielectric, ferromagnetic properties and magnetic phase transition of SmFeO3 ceramics

Li De-Ming Fang Song-Ke Tong Jin-Shan Su Jian Zhang Na Song Gui-Lin

Citation:

Effects of Ca2+ doping on dielectric, ferromagnetic properties and magnetic phase transition of SmFeO3 ceramics

Li De-Ming, Fang Song-Ke, Tong Jin-Shan, Su Jian, Zhang Na, Song Gui-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper we deal with the preparation of Sm1-xCaxFeO3(x=0-0.3) ceramics by the solid stat reaction and study the influences of Ca2+ doping on the dielectric,ferromagnetic properties and magnetic phase transition of SmFeO3.The crystalline structures of the Sm1-xCaxFeO3(x=0-0.3) samples are characterized by X-ray diffraction.The dielectric property is measured by a precisive impedance analyzer (HP4294A) in a frequency range from 40 to 110 MHz.The microstructures of Sm1-xCaxFeO3 are imaged with scanning electron microscope under an operating voltage of 20 kV.The coexistence of Fe3+/2+ ions in Sm1-xCaxFeO3 samples is investigated with X-ray photoelectron spectroscopy (XPS).The magnetic properties of Sm1-xCaxFeO3 are measured with the physical property measurement system.The result shows that all the peaks for Sm1-xCaxFeO3 samples can be indexed according to the crystal structure of pure SmFeO3 and their fine crystal structures are obtained by XRD.The lattice parameter a value of SmFeO3 gradually increases,while the values of b and c decrease,and the unit cell volume (V) shrinks slightly with the increase of x.The scan electron microscope images indicate that Ca2+ doping significantly increases the grain size of SmFeO3 ceramic.The average grain sizes of Sm1-xCaxFeO3 samples range from 0.5 to 2μm with Ca2+ doping.The εr values of Sm1-xCaxFeO3(x=0.1,0.2,0.3) measured at 1 kHz are about 5,3 and 2.6 times greater than that of SmFeO3,respectively,and dielectric loss increases by an order of magnitude.The increase of εr is mainly caused by the interaction between the dipole and the space charge orientation polarization.Both the conductance current and the space charge limiting current are the main factors to increase the dielectric loss.The magnetic measurements show that the M-H curves of Sm1-xCaxFeO3(x=0-0.3) samples exhibit saturated magnetic hysteresis loops with the increase of Ca2+,and the Mr values of Sm1-xCaxFeO3(x=0.1,0.2,0.3) are 20,31,and 68 times that of SmFeO3,respectively,indicating the weakly ferromagnetic behavior.The XPS spectrum indicates that the Fe2+ and Fe3+ co-exist in each of Sm1-xCaxFeO3 samples.The ratio of Fe2+/Fe3+ increases with doping Ca2+ increasing,and the magnetic preparation of SmFeO3 is enhanced.It can be attributed to the structural distortion and the formation of Fe2+–O2-–Fe3+ super-exchange.The spin recombination temperature (TSR) and the Neel temperature (TN) are obtained,respectively,to be 438 K and 687 K by measuring the M-T curves.It is noted that both TSR and TN of SmFeO3 samples move toward low temperature with the increase of x,and the spin recombination disappears when x=0.3.This is mainly due to the stability of the magnetic structure of SmFeO3 sample and the interactions of Fe3+–O2-–Fe3+ and Sm3+–O2-–Fe3+ super-exchange.
      Corresponding author: Song Gui-Lin, guilinyichen@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504093, U1304518), the Basic and Frontier Technology Research Project of Henan Province, China (Grant No. 162300410086), the Henan Provincial Key Research Project of Higher Education, China (Grant No. 18A140022), and the Project of Ph. D. Primer Project of Henan Normal University, China (Grant No. qd16173).
    [1]

    Hosoya Y, Itagaki Y, Aono H, Sadaoka Y 2005 Sensor Actuat. B:Chem. 108 198.

    [2]

    Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T, Tokura Y 2009 Nat. Mater. 8 558

    [3]

    Yuan X P, Tang Y K, Sun Y, Xu M X 2012 J. Appl. Phys. 111 053911

    [4]

    Steele B C, Heinzel A 2001 Nature 414 345

    [5]

    Kuo C Y, Drees Y, Fernández-Díaz M T, Zhao L, Vasylechko L, Sheptyakov D, Bell A M T, Pi T W, Lin H J, Steppke A, Tjeng L H, Hu Z, Komarek A C 2014 Phys. Rev. Lett. 113 217203

    [6]

    Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y, Scott J F 2011 Phys. Rev. Lett. 107 117201

    [7]

    Yuvaraja S, Layekb S, Vidyavathyc S M, Yuvaraja S, Meyrickd D, Selvana R K 2015 Mater. Res. Bull. 72 77

    [8]

    Xu K, Zhao W Y, Xing J J, Gu H, Ren W, Zhang J C, Cao S X 2017 J. Cryst. Growth. 467 111

    [9]

    Zhao X Y, Zhang K L, Xu K, Man P W, Xie T, Wu A H, Ma G H, Cao S X, Su L B 2016 Solid State Commun. 231-232 43

    [10]

    Silva-Santana M C, daSilva C A, Barrozo P, Plaza E J R, de los Santos Valladares L, Moreno N O 2016 J. Magn. Magn. Mater. 401 612

    [11]

    Kang J, Cui X P, Fang Y F, Zhang J C 2016 Solid State Commun. 248 101

    [12]

    Praveena K, Bharathi P, Liu H L, Varma K B R 2016 Ceram. Int. 42 13572

    [13]

    Huízar-Félix A M, Hernández T, de la Parra S, Ibarra J, Kharisov B 2012 Powder Technol. 229 290

    [14]

    Song G L, Su J, Zhang N, Chang F G 2015 Acta Phys. Sin. 64 247502 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 247502]

    [15]

    Prasad B V, Narsinga Rao G, Chen J W, Suresh Babu D 2011 Mater. Res. Bull. 46 1670

    [16]

    Jaiswal A, Das R, Adyanthaya S, Poddar P 2011 J. Phys. Chem. C 115 2954

    [17]

    Jung J S, Iyama A, Nakamura H, Mizumaki M, Kawamura N, Wakabayashi Y, Kimura T 2010 Phys. Rev. B 82 212403

    [18]

    Cao S, Zhao H, Kang B J, Zhang J C, Ren W 2014 Sci. Rep 4 5960

    [19]

    Babu P R, Bhaumik I, Ganesamoorthy S, Kalainathan S, Bhatt R, Karnal A K, Gupta P K 2016 J. Alloy. Compd. 676 313

    [20]

    Zhang C Y, Shang M Y, Liu M L, Zhang T S, Ge L, Yuan H M, Feng S H 2016 J. Alloy. Compd. 665 152

    [21]

    Jeong Y K, Lee J H, Ahn S J, Jang H M 2012 Solid State Commun. 152 1112

    [22]

    Marshall L G, Cheng J G, Zhou J S, Goodenough J B, Yan J Q, Mandrus D G 2012 Phys. Rev. B 86 064417

    [23]

    Zhao H, Cao S, Huang R, Ren W, Yuan S, Kang B, Lu B, Zhang J 2013 J. Appl. Phys. 114 113907

    [24]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mater. 324 2121

    [25]

    Sati P C, Kumar M, Chhoker S 2015 Ceram. Int. 41 3227

    [26]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloy. Compd. 696 503

  • [1]

    Hosoya Y, Itagaki Y, Aono H, Sadaoka Y 2005 Sensor Actuat. B:Chem. 108 198.

    [2]

    Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T, Tokura Y 2009 Nat. Mater. 8 558

    [3]

    Yuan X P, Tang Y K, Sun Y, Xu M X 2012 J. Appl. Phys. 111 053911

    [4]

    Steele B C, Heinzel A 2001 Nature 414 345

    [5]

    Kuo C Y, Drees Y, Fernández-Díaz M T, Zhao L, Vasylechko L, Sheptyakov D, Bell A M T, Pi T W, Lin H J, Steppke A, Tjeng L H, Hu Z, Komarek A C 2014 Phys. Rev. Lett. 113 217203

    [6]

    Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y, Scott J F 2011 Phys. Rev. Lett. 107 117201

    [7]

    Yuvaraja S, Layekb S, Vidyavathyc S M, Yuvaraja S, Meyrickd D, Selvana R K 2015 Mater. Res. Bull. 72 77

    [8]

    Xu K, Zhao W Y, Xing J J, Gu H, Ren W, Zhang J C, Cao S X 2017 J. Cryst. Growth. 467 111

    [9]

    Zhao X Y, Zhang K L, Xu K, Man P W, Xie T, Wu A H, Ma G H, Cao S X, Su L B 2016 Solid State Commun. 231-232 43

    [10]

    Silva-Santana M C, daSilva C A, Barrozo P, Plaza E J R, de los Santos Valladares L, Moreno N O 2016 J. Magn. Magn. Mater. 401 612

    [11]

    Kang J, Cui X P, Fang Y F, Zhang J C 2016 Solid State Commun. 248 101

    [12]

    Praveena K, Bharathi P, Liu H L, Varma K B R 2016 Ceram. Int. 42 13572

    [13]

    Huízar-Félix A M, Hernández T, de la Parra S, Ibarra J, Kharisov B 2012 Powder Technol. 229 290

    [14]

    Song G L, Su J, Zhang N, Chang F G 2015 Acta Phys. Sin. 64 247502 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 247502]

    [15]

    Prasad B V, Narsinga Rao G, Chen J W, Suresh Babu D 2011 Mater. Res. Bull. 46 1670

    [16]

    Jaiswal A, Das R, Adyanthaya S, Poddar P 2011 J. Phys. Chem. C 115 2954

    [17]

    Jung J S, Iyama A, Nakamura H, Mizumaki M, Kawamura N, Wakabayashi Y, Kimura T 2010 Phys. Rev. B 82 212403

    [18]

    Cao S, Zhao H, Kang B J, Zhang J C, Ren W 2014 Sci. Rep 4 5960

    [19]

    Babu P R, Bhaumik I, Ganesamoorthy S, Kalainathan S, Bhatt R, Karnal A K, Gupta P K 2016 J. Alloy. Compd. 676 313

    [20]

    Zhang C Y, Shang M Y, Liu M L, Zhang T S, Ge L, Yuan H M, Feng S H 2016 J. Alloy. Compd. 665 152

    [21]

    Jeong Y K, Lee J H, Ahn S J, Jang H M 2012 Solid State Commun. 152 1112

    [22]

    Marshall L G, Cheng J G, Zhou J S, Goodenough J B, Yan J Q, Mandrus D G 2012 Phys. Rev. B 86 064417

    [23]

    Zhao H, Cao S, Huang R, Ren W, Yuan S, Kang B, Lu B, Zhang J 2013 J. Appl. Phys. 114 113907

    [24]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mater. 324 2121

    [25]

    Sati P C, Kumar M, Chhoker S 2015 Ceram. Int. 41 3227

    [26]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloy. Compd. 696 503

  • [1] HE Yuanyao, YANG Bing. Recent research progress of ultracold-atom quantum simulation of Fermi-Hubbard model. Acta Physica Sinica, 2025, 74(1): 017101. doi: 10.7498/aps.74.20241595
    [2] Chu Xin-Bo, Jin Zuan-Ming, Wu Xu, Li Jing-Nan, Shen Yang, Wang Ruo-Yu, Ji Bing-Yu, Li Zhang-Shun, Peng Yan. Pulsed far-infrared radiation of ferromagnetic heterojunction and its photothermal regulation. Acta Physica Sinica, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [3] Liu Rong-Zhao, Fan Zhen-Jun, Wang Hao-Cheng, Ning Hao-Ming, Mi Zhen-Yu, Liu Guang-Yao, Song Xiao-Hui. Abnormal magnetic phenomenon at low temperature in Zn doped $ \left[{(\mathbf{C}\mathbf{H}}_{3}{)}_{2}\mathbf{N}{\mathbf{H}}_{2}\right]{\mathbf{C}\mathbf{o}}_{\mathit{x}}{\mathbf{Z}\mathbf{n}}_{1-\mathit{x}}{\left[\mathbf{H}\mathbf{C}\mathbf{O}\mathbf{O}\right]}_{3} $ frameworks. Acta Physica Sinica, 2023, 72(3): 030201. doi: 10.7498/aps.72.20221761
    [4] Luo Xu, Zhu Hai-Yan, Ding Ya-Ping. A modified model of magneto-mechanical effect on magnetization in ferromagnetic materials. Acta Physica Sinica, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [5] Yu Jia, Liu Tong, Zhao Kang, Pan Bo-Jin, Mu Qing-Ge, Ruan Bin-Bin, Ren Zhi-An. Single crystal growth and characterization of the 112-type iron-pnictide EuFeAs2. Acta Physica Sinica, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [6] Liu Qing-You, Luo Xu, Zhu Hai-Yan, Han Yi-Wei, Liu Jian-Xun. Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model. Acta Physica Sinica, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [7] Song Gui-Lin, Su Jian, Zhang Na, Chang Fang-Gao. Dielectric properties and high temperature magnetic behavior on multiferroics Bi1-xCaxFeO3 ceramics. Acta Physica Sinica, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [8] Li Zheng-Hua, Li Xiang. Micromagnetic modeling of L10-ordered FePtmagnetic thin films. Acta Physica Sinica, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [9] Zhu Jie, Su Yuan-Chang, Pan Jing, Feng Guo-Lin. Gaussian type inhomogeneous stress and strain effects on the magnetic properties in ferromagnetic thin films. Acta Physica Sinica, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [10] Song Gui-Lin, Luo Yan-Ping, Su Jian, Zhou Xiao-Hui, Chang Fang-Gao. Effects of Dy and Co co-substitution on the magnetic properties and TC of BiFeO3 ceramics. Acta Physica Sinica, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [11] Wang Guang-Jian, Jiang Cheng-Bao. The coercivity of the high temperature magnets Sm(CobalFe0.1Cu0.1Zr0.033)6.9 alloys. Acta Physica Sinica, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [12] Song Gui-Lin, Zhou Xiao-Hui, Su Jian, Yang Hai-Gang, Wang Tian-Xing, Chang Fang-Gao. Effects of Gd and Co doping on the electrical and ferromagnetism properties of BiFeO3 ceramics. Acta Physica Sinica, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [13] Deng Ya, Zhao Guo-Ping, Bo Niao. The analytical investigation of the magnetic orientation and hysteresis loop in exchange-spring magnetic multilayers. Acta Physica Sinica, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [14] Xian Cheng-Wei, Zhao Guo-Ping, Zhang Qing-Xiang, Xu Jin-Song. Magnetization reversal of perpendicularly orientated Nd2Fe14B/α-Fe trilayer. Acta Physica Sinica, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [15] Ma Yu-Bin. Ferromagnetic-antiferromagnetic transition and resistivity variation of oxygen-deficient La0.5Ca0.5MnO3 samples. Acta Physica Sinica, 2009, 58(7): 4976-4979. doi: 10.7498/aps.58.4976
    [16] Zhang Cui-Ling, Zheng Rui-Lun, Teng Jiao. Influence of NiFeNb seed layer on hysteresis loops of permalloy films. Acta Physica Sinica, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [17] Cheng Jin-Guang, Sui Yu, Qian Zheng-Nan, Liu Zhi-Guo, Huang Xi-Qiang, Miao Ji-Peng, Lü Zhe, Wang Xian-Jie, Su Wen-Hui. Specific heat of single-crystal NdMnO3. Acta Physica Sinica, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [18] Xiao Chun-Tao, Cao Xian-Sheng. Preisach analysis of La0.67Pb0.33MnO3. Acta Physica Sinica, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [19] Zhang Hong-Wei, Rong Chuan-Bing, Zhang Jian, Zhang Shao-Ying, Shen Bao-Gen. Simulation of magnetization behaviour in nanocrystalline Pr2Fe14B by micromagnetic finite element method. Acta Physica Sinica, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [20] WANG WEN-HU, LI SHI-LIANG, CHEN ZHAO-JIA, WEN HAI-HU, XIONG YU-FENG. ANOMALOUS MAGNETIZATION PEAK EFFECT IN Bi2Sr2CaCu2O8 SINGLE CRYSTALS. Acta Physica Sinica, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
Metrics
  • Abstract views:  6867
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2017
  • Accepted Date:  06 January 2018
  • Published Online:  20 March 2019

/

返回文章
返回