Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magneto-electronic properties and mechano-magnetic coupling effects in transition metal-doped armchair boron nitride nanoribbons

Liu Juan Hu Rui Fan Zhi-Qiang Zhang Zhen-Hua

Citation:

Magneto-electronic properties and mechano-magnetic coupling effects in transition metal-doped armchair boron nitride nanoribbons

Liu Juan, Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to the novel structure and rich electromagnetic properties, graphene shows very great promise in developing future nano-electronic devices and has thus attracted ever-increasing attention. Its isomorph-single layer, hexagonal boron-nitride (h-BN), in which carbon atoms in graphene are replaced with alternating boron and nitrogen atoms in the sp2 lattice structure, has led to a new research boom in condensed matter physics and material science. Although an h-BN layer has a similar structure to graphene, it possesses a number of properties different from its carbon counterpart. In this work, the first-principles method based on density functional theory is used to study the structural stability, magneto-electronic properties and mechano-magnetic coupling effects for an armchair BN nanoribbon doped with different transition metals (ABNNR-TM). The calculated binding energy and molecular dynamic stimulation suggest that these structures are stable. Meanwhile, the calculated results show that ABNNR-TM holds diverse magneto-electronic properties upon different TM doping. For example, they may be nonmagnetic metals, nonmagnetic semiconductors, magnetic metals, magnetic semiconductors, or bipolar magnetic semiconductors. In particular, the bipolar magnetic semiconductor is an important semiconducting material, which has promising applications in the fields of the giant magnetoresistance and the spin rectifying devices. Besides, the investigations on mechano-magnetic coupling effects indicate that magneto-electronic properties of ABNNR-TM are very sensitive to the stress, which can realize the phase transformation between the nonmagnetic metal, nonmagnetic semiconductor, magnetic metal, magnetic semiconductor, bipolar magnetic semiconductors, and half metal. Particularly, the obtained wide-gap half metal is of significance for developing novel spintronic devices. In short, this work demonstrates that it is possible to tune magneto-electronic properties of ABNNR-TM by mechanic method.
      Corresponding author: Zhang Zhen-Hua, lgzzhang@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771076, 61371065, 11674039) and the Hunan Provincial Natural Science Foundation of China (Grant Nos. 14JJ2076, 2015JJ3002, 2015JJ2009, 2015JJ2013).
    [1]

    Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782

    [2]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [3]

    Katsnelson M I, Novoselov K S 2007 Solid State Commun. 14 3

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602

    [6]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [7]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [8]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112

    [9]

    Liu H X, Zhang H M, Song J X, Zhang Z Y 2010 J. Semicond. 31 013001

    [10]

    Barone V, Peralta J E 2008 Nano Lett. 8 2210

    [11]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [12]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, Brink J V D 2007 Phys. Rev. B 76 073103

    [13]

    Topsakal M, Aktrk E, Ciraci S 2009 Phys. Rev. B 79 115442

    [14]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442

    [15]

    Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y S, Golberg D 2010 Nano Lett. 10 5049

    [16]

    Erickson K J, Gibb A L, Sinitskii A, Rousseas M, Alem N, Tour J M, Zettl A K 2011 Nano Lett. 11 3221

    [17]

    Li Y, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401

    [18]

    An L P, Liu N H 2011 J. Semicond. 32 092002

    [19]

    Chen T, Li X F, Wang L L, Luo K W, Xu L 2014 J. Appl. Phys. 116 013702

    [20]

    Park C H, Louie S G 2008 Nano Lett. 8 2200

    [21]

    Xu L, Wang L L, Huang W Q, Li X F, Xiao W Z 2014 Physica E 63 259

    [22]

    Ma D W, Ju W W, Chu X L, Lu Z S, Fu Z M 2013 Phys. Lett. A 377 1016

    [23]

    Han Y, Li R, Zhou J, Dong J M, Kawazoe Y 2014 Nanotechnology 25 115702

    [24]

    Zhu S Z, Li T 2016 Phys. Rev. B 93 115401

    [25]

    Qi J S, Qian X F, Qi L, Feng J, Shi D N, Li J 2012 Nano Lett. 12 1224

    [26]

    Lai L, Lu J, Wang L, Luo G F, Zhou J, Qin R, Gao Z X, Mei W N 2009 J. Phys. Chem. C 113 2273

    [27]

    Wang Y L, Ding Y, Ni J 2011 Appl. Phys. Lett. 99 053123

    [28]

    Luo K W, Wang L L, Li Q, Chen T, Xu L 2015 J. Semicond. 36 082003

    [29]

    Luo N N, Si C, Duan W H 2017 Phys. Rev. B 95 205432

    [30]

    Si C, Zhou J, Sun Z M 2015 ACS Appl. Mater. Interfaces 7 17510

    [31]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [32]

    Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175

    [33]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142

    [34]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [35]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 32575

    [36]

    Zhang J J, Zhang Z H, Tang G P, Deng X Q, Fan Z Q 2014 Org. Electron 15 1338

    [37]

    Zeng J, Chen K Q 2015 J. Mater. Chem. C 3 5697

    [38]

    Li X, Wu X, Yang J 2014 J. Am. Chem. Soc. 136 5664

    [39]

    Wang D, Zhang Z, Zhu Z, Liang B Gong C, Li L, Li Z, et al. 2017 Nature Doi:101038/na-ture 22060

    [40]

    Wang D, Zhang Z, Zhang J, Deng X, Fan Z, Tang G 2015 Carbon 94 996

    [41]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [42]

    Zhang Z, Liu X, Yu J, et al. 2016 WIREs Comput. Mole. Sci. 6 324

  • [1]

    Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782

    [2]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [3]

    Katsnelson M I, Novoselov K S 2007 Solid State Commun. 14 3

    [4]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602

    [6]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [7]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [8]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112

    [9]

    Liu H X, Zhang H M, Song J X, Zhang Z Y 2010 J. Semicond. 31 013001

    [10]

    Barone V, Peralta J E 2008 Nano Lett. 8 2210

    [11]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [12]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, Brink J V D 2007 Phys. Rev. B 76 073103

    [13]

    Topsakal M, Aktrk E, Ciraci S 2009 Phys. Rev. B 79 115442

    [14]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442

    [15]

    Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y S, Golberg D 2010 Nano Lett. 10 5049

    [16]

    Erickson K J, Gibb A L, Sinitskii A, Rousseas M, Alem N, Tour J M, Zettl A K 2011 Nano Lett. 11 3221

    [17]

    Li Y, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401

    [18]

    An L P, Liu N H 2011 J. Semicond. 32 092002

    [19]

    Chen T, Li X F, Wang L L, Luo K W, Xu L 2014 J. Appl. Phys. 116 013702

    [20]

    Park C H, Louie S G 2008 Nano Lett. 8 2200

    [21]

    Xu L, Wang L L, Huang W Q, Li X F, Xiao W Z 2014 Physica E 63 259

    [22]

    Ma D W, Ju W W, Chu X L, Lu Z S, Fu Z M 2013 Phys. Lett. A 377 1016

    [23]

    Han Y, Li R, Zhou J, Dong J M, Kawazoe Y 2014 Nanotechnology 25 115702

    [24]

    Zhu S Z, Li T 2016 Phys. Rev. B 93 115401

    [25]

    Qi J S, Qian X F, Qi L, Feng J, Shi D N, Li J 2012 Nano Lett. 12 1224

    [26]

    Lai L, Lu J, Wang L, Luo G F, Zhou J, Qin R, Gao Z X, Mei W N 2009 J. Phys. Chem. C 113 2273

    [27]

    Wang Y L, Ding Y, Ni J 2011 Appl. Phys. Lett. 99 053123

    [28]

    Luo K W, Wang L L, Li Q, Chen T, Xu L 2015 J. Semicond. 36 082003

    [29]

    Luo N N, Si C, Duan W H 2017 Phys. Rev. B 95 205432

    [30]

    Si C, Zhou J, Sun Z M 2015 ACS Appl. Mater. Interfaces 7 17510

    [31]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [32]

    Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175

    [33]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142

    [34]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [35]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 32575

    [36]

    Zhang J J, Zhang Z H, Tang G P, Deng X Q, Fan Z Q 2014 Org. Electron 15 1338

    [37]

    Zeng J, Chen K Q 2015 J. Mater. Chem. C 3 5697

    [38]

    Li X, Wu X, Yang J 2014 J. Am. Chem. Soc. 136 5664

    [39]

    Wang D, Zhang Z, Zhu Z, Liang B Gong C, Li L, Li Z, et al. 2017 Nature Doi:101038/na-ture 22060

    [40]

    Wang D, Zhang Z, Zhang J, Deng X, Fan Z, Tang G 2015 Carbon 94 996

    [41]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [42]

    Zhang Z, Liu X, Yu J, et al. 2016 WIREs Comput. Mole. Sci. 6 324

  • [1] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electronic properties and modulation effects on edge-modified GeS2 nanoribbons. Acta Physica Sinica, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] Liu En-Ke. Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics. Acta Physica Sinica, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [3] Chen Xing-Yuan, Huang Yao, Peng Yi-Tian. Tribological properties of suspended hexagonal boron nitride under electric field. Acta Physica Sinica, 2021, 70(16): 166801. doi: 10.7498/aps.70.20210386
    [4] Zhang Hua-Lin, He Xin, Zhang Zhen-Hua. Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom. Acta Physica Sinica, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [5] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [6] Xiao Jia-Yong, Tan Xing-Yi, Yang Bei-Bei, Ren Da-Hua, Zuo An-You, Fu Hua-Hua. Thermal spin transport properties in a hybrid structure of single-walled carbon nanotubes and zigzag-edge boron nitride nanoribbons. Acta Physica Sinica, 2019, 68(5): 057301. doi: 10.7498/aps.68.20181968
    [7] Yuan Jian-Hui, Lei Qin-Wen, Liu Qi-Cheng. Simulation research on formation and compressive properties of aluminum nanowires inside carbon nanotubes and boron-nitride nanotubes. Acta Physica Sinica, 2019, 68(18): 186101. doi: 10.7498/aps.68.20190137
    [8] Han Jia-Ning, Fan Zhi-Qiang, Zhang Zhen-Hua. Structure stability, magneto-electronic properties, and modulation effects of Fe3GeTe2 nanoribbons. Acta Physica Sinica, 2019, 68(20): 208502. doi: 10.7498/aps.68.20191103
    [9] Li Ye-Hua, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic properties of InSe nanoribbons terminated with non-metallic atoms and its strain modulation. Acta Physica Sinica, 2019, 68(19): 198503. doi: 10.7498/aps.68.20190547
    [10] Zhang Hua-Lin, Sun Lin, Han Jia-Ning. Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment. Acta Physica Sinica, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [11] Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic and magnetic transport properties of triangular graphene quantum-dot arrays. Acta Physica Sinica, 2017, 66(13): 138501. doi: 10.7498/aps.66.138501
    [12] Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong. Structural and electronic properties of hydrogenated bilayer boron nitride. Acta Physica Sinica, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [13] Li Yu-Bo, Wang Xiao, Dai Ting-Ge, Yuan Guang-Zhong, Yang Hang-Sheng. First-principle study of vacancy-induced cubic boron nitride electronic structure and optical propertiy changes. Acta Physica Sinica, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [14] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [15] Wang Dao-Jun. Electronic structure and spin-polarization of boron-nitride nanoflake. Acta Physica Sinica, 2013, 62(5): 057302. doi: 10.7498/aps.62.057302
    [16] Xiao Hua-Ping, Chen Yuan-Ping, Yang Kai-Ke, Wei Xiao-Lin, Sun Li-Zhong, Zhong Jian-Xin. Electronic properties of disordered bilayer hexagonal boron nitride quantum films. Acta Physica Sinica, 2012, 61(17): 178101. doi: 10.7498/aps.61.178101
    [17] He Kai-Hua, Zheng Guang, Lü Tao, Chen Gang, Ji Guang-Fu. Effect of high pressures on structural, electronic and optical properties of BN nanotube. Acta Physica Sinica, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
    [18] Wang Zhen-Xia, Li Xue-Peng, Yu Li-Ping, Ma Yu-Gang, He Guo-Wei, Hu Gang, Chen Yi, Duan Xiao-Feng. . Acta Physica Sinica, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [19] LI JIAN-FENG, YAO LIAN-ZENG, CAI WEI-LI, MO JI-MEI. PHOTOLUMINESCENCE STUDY OF ZnO NANOCRYSTALLITES WITH BN CAPSULES. Acta Physica Sinica, 2001, 50(8): 1623-1626. doi: 10.7498/aps.50.1623
    [20] MA XI-YING, YUE JIN-SHUN, HE DE-YAN, CHEN GUANG-HUA. THE GROWTH CHARACTER AND ADHESION OF CUBIC BORON NITRIDE THIN FILMS. Acta Physica Sinica, 1998, 47(5): 871-875. doi: 10.7498/aps.47.871
Metrics
  • Abstract views:  6282
  • PDF Downloads:  163
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2017
  • Accepted Date:  10 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回