搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化硼纳米带功能化碳纳米管的热自旋输运性质

肖佳勇 谭兴毅 杨贝贝 任达华 左安友 傅华华

引用本文:
Citation:

氮化硼纳米带功能化碳纳米管的热自旋输运性质

肖佳勇, 谭兴毅, 杨贝贝, 任达华, 左安友, 傅华华

Thermal spin transport properties in a hybrid structure of single-walled carbon nanotubes and zigzag-edge boron nitride nanoribbons

Xiao Jia-Yong, Tan Xing-Yi, Yang Bei-Bei, Ren Da-Hua, Zuo An-You, Fu Hua-Hua
PDF
HTML
导出引用
  • 热自旋电子学器件结合了自旋电子学和热电子学各自的优点, 对人类可持续发展具有重要作用. 本文研究了锯齿形BN纳米带(ZBNRs)共价功能化碳纳米管(SWCNT)的电子结构, 发现ZBNRs-B-(6, 6)SWCNT为磁性半金属, nZBNRs-B-(6, 6)SWCNT (n = 2—8)为磁性金属; nZBNRs-N-(6, 6)SWCNT (n = 1—8)为双极化铁磁半导体; 4ZBNRs-B-(4, 4)SWCNT和4ZBNRs-N-(4, 4)SWCNT为磁性半金属, 4ZBNRs-B-(m, m)SWCNT (m = 5—9)为磁性金属; 4ZBNRs-N-(m, m)SWCNT (m = 5—9)为双极化铁磁半导体. 然后, 基于锯齿形BN纳米带共价功能化碳纳米管设计了新型热自旋电子学器件, 发现基于ZBNRs-N-(6, 6)SWCNT的器件具有热自旋过滤效应; 而8ZBNRs-N-(6, 6)SWCNT和nZBNRs-B-(6, 6)SWCNT (n = 1, 8)都存在自旋相关塞贝克效应. 这些发现表明BN纳米带功能化碳纳米管在热自旋电子学器件方面具有潜在的应用.
    The spin caloritronics device, because of the characteristics of spintronics and thermoelectronics, plays an important role in human sustainable development. A lot of spin caloritronic devices based carbon materials (such as graphene nanoribbons, carbon nanotubes) have been reported. However, there are few studies of the thermal spin transport properties in a hybrid structure of single-walled carbon nanotubes and zigzag-edge BN nanoribbons, and the thermal spin transport mechanism of this structure is still unclear. In this paper, using the nonequilibrium Green’s function (NEGF) combined with the first principle calculations, the electronic structures and the thermal spin transport properties of the zigzag edge BN nanoribbons functionalized single-walled carbon nanotubes are studied. It is shown that the ZBNRs-N-(6, 6)SWCNT is a half-metal, while the nZBNRs-N-(6, 6)SWCNT are magnetic metals (n = 2−8), and the nZBNRs-B-(6, 6)SWCNT are bipolar magnetic semiconductors (n = 1−8). The 4ZBNRs-N-(4, 4)SWCNT and 4ZBNRs-B-(4, 4)SWCNT are half-metals, while the 4ZBNRs-B-(m, m)SWCNT (m = 5−9)are magnetic metals, and the 4ZBNRs-N-(m, m)SWCNT (m = 5−9) are bipolar magnetic semiconductors. Then, some novel spin caloritronicdevices are designed based on nZBNRs-N-(6, 6)SWCNT and nZBNRs-B-(6, 6)SWCNT (n = 1, 8). For the ZBNRs-B-(6, 6)SWCNT, when the temperature of the left electrode is increased above a critical value, the thermal spin-up current then increases remarkably from zero. Meanwhile the thermal spin-down current remains approximately equal to zero in the entire temperature region, thus indicating the formation of a thermal spin filter. For the 8ZBNRs-N-(6, 6)SWCNT and nZBNRs-B-(6, 6)SWCNT (n = 1, 8), when a temperature gradient is produced between two electrodes, the spin-up and spin-down currents are driven in the opposite directions, which indicates that the spin-dependent Seebeck effect (SDSE) appears. In order to obtain the fundamental mechanism of thermal spin filter effect and SDSE, the Landauer-Büttiker formalism is adopted. It is found that the currents (Iup and Idn) mainly depend on two factors: 1)the transport coefficient; 2) the difference between the Fermi-Dirac distributions of the left and right electrode. Additionally, the electron current Ie and the hole current Ih will be generated when a temperature gradient is produced between the left and right lead. Furthermore, the Iup and Idn have the opposite directions for the spin up transmission peaksbelow the Fermi level while they have the opposite directions for the spin down transmission peaks above the Fermi level in the transmission spectrum, which demonstrates the presence of the SDSE in the 8ZBNRs-B-(6, 6)SWCNT and nZBNRs-N-(6, 6)SWCNT (n = 1, 8). Finally, the results indicate that nZBNR-N-(m, m)SWCNT and nZBNR-B-(m, m)SWCNT can have potential applications in thermospin electronic devices.
      通信作者: 谭兴毅, tanxy@hbmy.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11864011)和湖北省自然科学基金(批准号: 2018CFB390)资助的课题.
      Corresponding author: Tan Xing-Yi, tanxy@hbmy.edu.cn
    • Funds: Project supportedby the National Natural Science Foundation of China (Grant No. 11864011) and the Natural Science Foundation of Hubei Province, China (Grant No. 2018CFB390).
    [1]

    Uchida K, Takahashi S, Harii K, Leda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [2]

    Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Leda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S, Saitoh E 2009 Nat. Mater. 9 894

    [3]

    Ezawa M 2009 Eur. Phys. B 67 543Google Scholar

    [4]

    Borlenghi S, Wang W W, Fangohr H, Bergqvist L, Delin A 2014 Phys. Rev. Lett. 112 047203Google Scholar

    [5]

    Fu H H, Wu D D, Gu L, Wu M H, Wu R 2015 Phys. Rev. B 92 045418Google Scholar

    [6]

    Ren J 2013 Phys. Rev. B 88 220406(R)Google Scholar

    [7]

    Ren J, Zhu J X 2013 Phys. Rev. B 87 241412(R)Google Scholar

    [8]

    Fu H H, Gu L, Wu D D 2016 Phys. Chem. Chem. Phys. 18 12742Google Scholar

    [9]

    Ren J, Fransson J, Zhu J X 2014 Phys. Rev. B 89 214407Google Scholar

    [10]

    Wu D D, Liu Q B, Fu H H, Wu R 2017 Nanoscale 9 18334Google Scholar

    [11]

    Liu Q B, Wu D D, Fu H H 2017 Phys. Chem. Chem. Phys. 19 27132Google Scholar

    [12]

    Avouris P, Chen Z, Perebeinos V 2007 Nat. Nanotechnol. 2 605Google Scholar

    [13]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1380

    [14]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470Google Scholar

    [15]

    Zeng M G, Feng Y P, Liang G C 2011 Nano Lett. 11 1369Google Scholar

    [16]

    Zeng M G, Shen L, Zhou M, Zhang C, Feng Y P 2011 Phys. Rev. B 83 115427Google Scholar

    [17]

    Zeng M, Feng Y, Liang G 2011 Appl. Phys. Lett. 99 123114Google Scholar

    [18]

    Ni Y, Yao K L, Fu H H, Gao G Y, Zhu S C, Wang S L 2013 Sci. Rep. 3 1380Google Scholar

    [19]

    Li J W, Wang B, Xu F M, Wei Y D, Wang J 2016 Phys. Rev. B 93 195426Google Scholar

    [20]

    Liu Q B, Wu D D, Fu H H 2017 Phys. Chem. Chem. Phys. 19 27132Google Scholar

    [21]

    Tang X Q, Ye X M, Tan X Y, Ren D H 2018 Sci. Rep. 8 927Google Scholar

    [22]

    Lou P 2014 Phys. Status Solidi RRL 8 187Google Scholar

    [23]

    Zeng H L, Gou Y D, Yan X H, Zhou J 2017 Phys. Chem. Chem. Phys. 19 21507Google Scholar

    [24]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104(R)Google Scholar

    [25]

    Padilha J E, Lima M P, Silva A J R D, Fazzio A 2011 Phys. Rev. B 84 113412Google Scholar

    [26]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [27]

    Perdew J P, Wang Y 1992 Phys. Rev. B 46 12947Google Scholar

    [28]

    Ye X M, Tang X Q, Tan X Y, Ren D H 2018 Phys. Chem. Chem. Phys. 20 19424Google Scholar

    [29]

    Yao K, Fu H 2012 Appl. Phys. Lett. 100 13502Google Scholar

    [30]

    Wang B G, Wang J, Gou H 2001 J. Phys. Soc. Jpn. 70 2645Google Scholar

    [31]

    Rejec T, Ramsak A, Jefferson J H 2002 Phys. Rev. B 65 235301Google Scholar

    [32]

    Broido D A, Mingo N 2005 Phys. Rev. Lett. 95 096105Google Scholar

    [33]

    Saha K K, Markussen T, Thygesen K S, Nikolic B K 2011 Phys. Rev. B 84 041412(R)Google Scholar

    [34]

    Du A, Chen Y, Zhu Z, Lu G, Smith S C 2009 J. Am. Chem. Soc. 131 1682Google Scholar

    [35]

    Dutta S, Manna A, Pati S 2009 Phys. Rev. Lett. 102 096601Google Scholar

    [36]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305Google Scholar

    [37]

    Tang S, Cao Z 2010 Phys. Chem. Chem. Phys. 12 2313Google Scholar

    [38]

    Yu Z, Hu M L, Zhang C X, He C Y, Sun L Z, Zhong J 2011 J. Phys. Chem. C 115 10836

    [39]

    Liu Y, Wu X, Zhao Y, Zeng X C, Yang J 2011 J. Phys. Chem. C 115 9442Google Scholar

    [40]

    Wang Y, Ding Y, Ni J 2012 J. Phys. Chem. C 116 5995Google Scholar

    [41]

    Tang C, Kou L, Chen C 2012 Chem. Phys. Lett. 523 98Google Scholar

    [42]

    Christenholz C L, Obenchain D A, Peebles R A, Peebles S A 2014 J. Phys. Chem. C 118 16104Google Scholar

    [43]

    WangY, Li Y, Chen Z 2014 J. Phys. Chem. C 118 25051Google Scholar

    [44]

    Zhu L, Li R, Yao K L 2017 Phys. Chem. Chem. Phys. 19 4085Google Scholar

  • 图 1  (a) nZBNRs-B-(6, 6)SWCNT结构; (b) nZBNRs-N-(6, 6)SWCNT结构; (c)器件结构图; 图中灰色表示碳原子, 黑色表示氢原子, 蓝色表示氮原子, 棕色表示硼原子

    Fig. 1.  (a) Structure of nZBNRs-B-(6, 6)SWCNT; (b) the structure of nZBNRs-N-(6, 6)SWCNT; (c) the schematic illustration of the device. Gray, black, blue and brown balls indicate carbon, hydrogen, nitrogen and boron atoms, respectively.

    图 2  nZGNR-B-(6, 6)SWCNT的能带结构图

    Fig. 2.  The band structures of nZGNR-B-(6, 6)SWCNT.

    图 3  nZGNR-N-(6, 6)SWCNT的能带结构图

    Fig. 3.  Band structures of nZGNR-N-(6, 6)SWCNT.

    图 4  4ZGNR-B-(m, m)SWCNT和4ZGNR-N-(m, m)SWCNT(m = 5—9)的能带结构图

    Fig. 4.  Band structures of 才4ZGNR-B-(m, m)SWCNT and 4ZGNR-N-(m, m)SWCNT(m = 5−9).

    图 5  (a)—(d)分别为6ABNRs-(8, 0)SWCNT的结构图, 其中(a), (b)结构中BN与C形成四边形, (c), (d)结构中BN与C形成六边形; (e), (f)为与之对应的能带结构图, 显然为非磁性半导体结构; (f), (h)为6ABNRs-(9, 0)SWCNT的能带结构图, 同样呈现为半导体特征

    Fig. 5.  (a)—(d) Structure of 6ABNRs-B-(8, 0)SWCNT: (a), (b) the carbon, nitrogen and boron atoms form a quadrilateral structure; (c), (d) the carbon, nitrogen and boron atoms form a hexagonal structure. Gray, white, black, blue and brown balls indicate carbon, hydrogen, nitrogen and boron atoms, respectively. (e), (f) The band structures of 6ABNRs-B-(8, 0)SWCNT. (g), (h) The band structures of 6ABNRs-B-(9, 0)SWCNT.

    图 6  nZGNR-N-(6, 6)SWCNT和nZGNR-B-(6, 6)SWCNT(n = 1, 8)的电荷密度和自旋极化密度分布图, 图中灰色表示碳原子, 白色表示氢原子, 蓝色表示氮原子, 棕色表示硼原子

    Fig. 6.  Electric densities and spin densities distribution of nZGNR-N-(6, 6)SWCNT和nZGNR-B-(6, 6)SWCNT (n = 1, 8). Gray, white, blue and brown balls indicate carbon, hydrogen, nitrogen, and boron atoms, respectively.

    图 7  自旋相关电流随TL$\Delta T$的变化曲线

    Fig. 7.  Spin-dependent currents versus $\Delta T/T_{\rm L}$ for some selected values of $T_{\rm L}/\Delta T$.

    图 8  器件输运谱图

    Fig. 8.  Spin dependent transmission spectra for devices.

  • [1]

    Uchida K, Takahashi S, Harii K, Leda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [2]

    Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Leda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S, Saitoh E 2009 Nat. Mater. 9 894

    [3]

    Ezawa M 2009 Eur. Phys. B 67 543Google Scholar

    [4]

    Borlenghi S, Wang W W, Fangohr H, Bergqvist L, Delin A 2014 Phys. Rev. Lett. 112 047203Google Scholar

    [5]

    Fu H H, Wu D D, Gu L, Wu M H, Wu R 2015 Phys. Rev. B 92 045418Google Scholar

    [6]

    Ren J 2013 Phys. Rev. B 88 220406(R)Google Scholar

    [7]

    Ren J, Zhu J X 2013 Phys. Rev. B 87 241412(R)Google Scholar

    [8]

    Fu H H, Gu L, Wu D D 2016 Phys. Chem. Chem. Phys. 18 12742Google Scholar

    [9]

    Ren J, Fransson J, Zhu J X 2014 Phys. Rev. B 89 214407Google Scholar

    [10]

    Wu D D, Liu Q B, Fu H H, Wu R 2017 Nanoscale 9 18334Google Scholar

    [11]

    Liu Q B, Wu D D, Fu H H 2017 Phys. Chem. Chem. Phys. 19 27132Google Scholar

    [12]

    Avouris P, Chen Z, Perebeinos V 2007 Nat. Nanotechnol. 2 605Google Scholar

    [13]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1380

    [14]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470Google Scholar

    [15]

    Zeng M G, Feng Y P, Liang G C 2011 Nano Lett. 11 1369Google Scholar

    [16]

    Zeng M G, Shen L, Zhou M, Zhang C, Feng Y P 2011 Phys. Rev. B 83 115427Google Scholar

    [17]

    Zeng M, Feng Y, Liang G 2011 Appl. Phys. Lett. 99 123114Google Scholar

    [18]

    Ni Y, Yao K L, Fu H H, Gao G Y, Zhu S C, Wang S L 2013 Sci. Rep. 3 1380Google Scholar

    [19]

    Li J W, Wang B, Xu F M, Wei Y D, Wang J 2016 Phys. Rev. B 93 195426Google Scholar

    [20]

    Liu Q B, Wu D D, Fu H H 2017 Phys. Chem. Chem. Phys. 19 27132Google Scholar

    [21]

    Tang X Q, Ye X M, Tan X Y, Ren D H 2018 Sci. Rep. 8 927Google Scholar

    [22]

    Lou P 2014 Phys. Status Solidi RRL 8 187Google Scholar

    [23]

    Zeng H L, Gou Y D, Yan X H, Zhou J 2017 Phys. Chem. Chem. Phys. 19 21507Google Scholar

    [24]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104(R)Google Scholar

    [25]

    Padilha J E, Lima M P, Silva A J R D, Fazzio A 2011 Phys. Rev. B 84 113412Google Scholar

    [26]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [27]

    Perdew J P, Wang Y 1992 Phys. Rev. B 46 12947Google Scholar

    [28]

    Ye X M, Tang X Q, Tan X Y, Ren D H 2018 Phys. Chem. Chem. Phys. 20 19424Google Scholar

    [29]

    Yao K, Fu H 2012 Appl. Phys. Lett. 100 13502Google Scholar

    [30]

    Wang B G, Wang J, Gou H 2001 J. Phys. Soc. Jpn. 70 2645Google Scholar

    [31]

    Rejec T, Ramsak A, Jefferson J H 2002 Phys. Rev. B 65 235301Google Scholar

    [32]

    Broido D A, Mingo N 2005 Phys. Rev. Lett. 95 096105Google Scholar

    [33]

    Saha K K, Markussen T, Thygesen K S, Nikolic B K 2011 Phys. Rev. B 84 041412(R)Google Scholar

    [34]

    Du A, Chen Y, Zhu Z, Lu G, Smith S C 2009 J. Am. Chem. Soc. 131 1682Google Scholar

    [35]

    Dutta S, Manna A, Pati S 2009 Phys. Rev. Lett. 102 096601Google Scholar

    [36]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305Google Scholar

    [37]

    Tang S, Cao Z 2010 Phys. Chem. Chem. Phys. 12 2313Google Scholar

    [38]

    Yu Z, Hu M L, Zhang C X, He C Y, Sun L Z, Zhong J 2011 J. Phys. Chem. C 115 10836

    [39]

    Liu Y, Wu X, Zhao Y, Zeng X C, Yang J 2011 J. Phys. Chem. C 115 9442Google Scholar

    [40]

    Wang Y, Ding Y, Ni J 2012 J. Phys. Chem. C 116 5995Google Scholar

    [41]

    Tang C, Kou L, Chen C 2012 Chem. Phys. Lett. 523 98Google Scholar

    [42]

    Christenholz C L, Obenchain D A, Peebles R A, Peebles S A 2014 J. Phys. Chem. C 118 16104Google Scholar

    [43]

    WangY, Li Y, Chen Z 2014 J. Phys. Chem. C 118 25051Google Scholar

    [44]

    Zhu L, Li R, Yao K L 2017 Phys. Chem. Chem. Phys. 19 4085Google Scholar

  • [1] 程宏阳, 马倩茹, 徐浩然, 张慧萍, 金钻明, 何为, 彭滟. 硅基自旋光电子学太赫兹辐射源特性. 物理学报, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [2] 薛文明, 李金, 何朝宇, 欧阳滔, 罗朝波, 唐超, 钟建新. H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应. 物理学报, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [3] 贺亚萍, 陈明霞, 潘杰锋, 李冬, 林港钧, 黄新红. Rashba自旋-轨道耦合调制的单层半导体纳米结构中电子的自旋极化效应. 物理学报, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [4] 陈兴, 赵晗, 张艳, 刘露, 杨志宏, 宋玲玲. 具有连续反量子点的石墨烯纳米带中纯自旋流的实现. 物理学报, 2021, 70(19): 198503. doi: 10.7498/aps.70.20210242
    [5] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [6] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [7] 刘娟, 胡锐, 范志强, 张振华. 过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应. 物理学报, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [8] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [9] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [10] 杨军, 章曦, 苗仁德. 自旋场效应晶体管中隧道磁阻的势垒相关反转效应. 物理学报, 2014, 63(21): 217202. doi: 10.7498/aps.63.217202
    [11] 罗幸, 周新星, 罗海陆, 文双春. 光自旋霍尔效应中的交叉偏振特性研究. 物理学报, 2012, 61(19): 194202. doi: 10.7498/aps.61.194202
    [12] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [13] 王鲁顺, 江慧, 孔祥木. 混合自旋XY系统热纠缠的研究. 物理学报, 2012, 61(24): 240304. doi: 10.7498/aps.61.240304
    [14] 马娟, 罗海陆, 文双春. 多层介质中的光自旋霍尔效应研究. 物理学报, 2011, 60(9): 094205. doi: 10.7498/aps.60.094205
    [15] 王志明. GaAs自旋注入及巨霍尔效应的研究. 物理学报, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [16] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [17] 金莲, 朱林, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性. 物理学报, 2009, 58(12): 8577-8583. doi: 10.7498/aps.58.8577
    [18] 杨昌平, 陈顺生, 戴 琪, 郭定和, 王 浩. Nd0.67Sr0.33MnOy(y<3.0)中的自旋相关电致电阻效应. 物理学报, 2007, 56(8): 4908-4913. doi: 10.7498/aps.56.4908
    [19] 姜宏伟, 王艾玲, 郑 鹉. 自旋阀中的各向异性磁电阻效应. 物理学报, 2005, 54(5): 2338-2341. doi: 10.7498/aps.54.2338
    [20] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究. 物理学报, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
计量
  • 文章访问数:  7446
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2018-12-09
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回