搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3GeTe2纳米带的结构稳定性、磁电子性质及调控效应

韩佳凝 范志强 张振华

引用本文:
Citation:

Fe3GeTe2纳米带的结构稳定性、磁电子性质及调控效应

韩佳凝, 范志强, 张振华

Structure stability, magneto-electronic properties, and modulation effects of Fe3GeTe2 nanoribbons

Han Jia-Ning, Fan Zhi-Qiang, Zhang Zhen-Hua
PDF
HTML
导出引用
  • Fe3GeTe2是目前发现的少数几种二维铁磁材料之一. 基于密度泛函理论的第一性原理方法, 我们对二维Fe3GeTe2剪裁而成的纳米带NR(n)的结构稳定性和磁电子学特性进行了详细研究. 计算的结合能及分子动力学模拟表明纳米带的结构是非常稳定的. 纳米带呈现较大的磁矩及磁化能, 这说明它们具有较高的磁稳定性. 特别是在费米能级上, 纳米带具有较高的自旋极化率(SPF), 如NR(5)的SPF可达100%. 同时发现SPF随纳米带宽度变化有明显的奇偶振荡效应, 且纳米带的SPF比2维单层的情况有明显优势. 此外, 拉伸效应的计算结果表明, 应变可以灵活地调节纳米带的SPF使其在接近零值和85.6%之间变化, 这意味着可设计一个机械开关来控制低偏压下的自旋输运, 使其可逆地工作在高自旋极化与无自旋极化之间.
    Fe3GeTe2 monolayer is one of the currently fabricated 2-dimensional (2D) ferromagnetic materials. Based on the first principle of density functional theory, we here study the structural stability and magneto-electronic properties of nanoribbons NR(n) obtained by cutting 2D Fe3GeTe2. The calculated binding energy and molecular dynamics simulation results identify that nanoribbons are rather stable. The large magnetic moment and magnetized energy prove the extremely high magnetism stability for NR(n). Moreover, with the increase of the width, the magnetic moment of the nanoribbons generally increases, and gradually tends to a stable value. In particular, the nanoribbons possess a high spin polarization efficiency at the Fermi level (SPF). For example, the SPF for NR(5) is up to 100%. With the width variation of the nanoribbons, the SPF has a significant odd-even oscillating effect, that is, the spin-polarization of the odd nanoribbons is higher than that of the adjacent even nanoribbons, especially when the width is in the range of n ≤ 12. This means that the α-spin and β-spin are quite different in the density of states at the Fermi level when the width is odd or even. This may be caused by the difference of the quantum confinement effect for the odd or even nanoribbons, respectively. Meanwhile, when the width of the nanoribbons is wide enough, the odd-even oscillation effect of the spin polarizability is stabilized in a relatively small range, and the nanoribbons finally tend to be 2D Fe3GeTe2 monolayer. The nanoribbons have an obvious advantage on SPF over the 2D Fe3GeTe2 monolayer. In addition, the calculation of the strain effect demonstrates that the strain can flexibly tune the SPF varying from approximately zero to 85.6%, and the SPF reaches a maximum of 85.6% at a stretch of 4%, which is a fairly high value; then reaches a minimum at a stretch of 8%, almost being zero, which means that a mechanical switch can be designed to control the low-bias spin transition, allowing it work between high spin polarization and spin unpolarization.
      通信作者: 张振华, zhzhang@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771076, 11674039)资助的课题
      Corresponding author: Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771076, 11674039)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva1 I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451Google Scholar

    [3]

    Zhang M, Wang X X, Cao W Q, Yuan J, Cao M S 2019 Adv. Opt. Mater. 7 1900689Google Scholar

    [4]

    Zeng Y, Wu D, Cao X, Zhou W, Tang L, Chen K 2019 Adv. Funct. Mater. 531 1800390Google Scholar

    [5]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [6]

    Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [7]

    Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Rubio A 2014 Phys. Rev. B 90 121408Google Scholar

    [8]

    Latzke D W, Zhang W, Suslu A, Chang T R, Lin H, Jeng H T, Lanzara A 2015 Phys. Rev. B 91 235202Google Scholar

    [9]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [10]

    Kuang W, Hu R, Fan Z, Zhang Z 2019 Nanotechnology 30 145201Google Scholar

    [11]

    Blase X, Rubio A, Louie S G, Cohen M L 1995 Phys. Rev. B 51 6868

    [12]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [13]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [14]

    Efetov D K, Wang L, Handschin C, Efetov K B, Shuang J, Cava R, Kim P 2016 Nature Phys. 12 328Google Scholar

    [15]

    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar

    [16]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262Google Scholar

    [17]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Xie B P 2014 Nat. Commun. 5 5044Google Scholar

    [18]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Ding H, Ou Y B, Deng B, Chang K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [19]

    Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K 2006 Eur. J. Inorg. Chem. 2006 1561Google Scholar

    [20]

    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Zou J 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [21]

    Zhuang H L, Xie Y, Kent P R C, Ganesh P, 2015 Phys. Rev. B 92 035407Google Scholar

    [22]

    Siberchicot B, Jobic S, Carteaux V, Gressier P, Ouvrard G 1996 J. Phys. Chem. 100 5863Google Scholar

    [23]

    Gong C 2017 Nature 546 265Google Scholar

    [24]

    Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K 2006 Chem. Inform. 37 1561

    [25]

    Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [26]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Wang J 2018 Nature 563 94Google Scholar

    [27]

    Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michiola C, Fang M 2013 J. Phys. Soc. Jpn. 82 124711Google Scholar

    [28]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Wu W 2018 Nature Mater. 17 778Google Scholar

    [29]

    Wang Y, Xian C, Wang J, Liu B, Ling L, Zhang L, Xiong Y 2017 Phys. Rev. B 96 134428Google Scholar

    [30]

    Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Xie D 2018 Sci. Adv. 4 6791Google Scholar

    [31]

    Gan Y, Sun L, Banhart F 2008 Small 4 587Google Scholar

    [32]

    Son Y W, Cohen M L, Louie S G 2006 Phys Rev. Lett 97 216803Google Scholar

    [33]

    Botello-Méndez A R, López-Urías F, Terrones M, Terrones H 2008 Nano Lett. 8 1562Google Scholar

    [34]

    Zhang R Y, Zheng J M, Jiang Z Y 2018 Chin. Phys. Lett. 35 017302Google Scholar

    [35]

    Han X, Morgan Stewart H, Shevlin S A, Catlow C R A Guo Z X 2014 Nano Lett. 14 4607Google Scholar

    [36]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [37]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [38]

    Wu D, Cao X, Chen S, Tang L, Feng Y, Chen K, Zhou W 2019 J. Mater. Chem. A 7 19037Google Scholar

    [39]

    Zhang H L, Sun L, Han J N 2017 Acta Phys. Sin. 66 246101

    [40]

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 物理学报 66 246101Google Scholar

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 246101Google Scholar

    [41]

    Hashmi A, Hong J 2017 物理学报 66 238501Google Scholar

    Hashmi A, Hong J 2017 J. Phys. Chem. C 66 238501Google Scholar

    [42]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745

  • 图 1  (a) 2D FGT单层原子结构的顶视图和边视图, 阴影部分表示所剪裁的纳米带NR(n); (b)宽度n = 9时的FGT纳米带, 黑色虚线框代表纳米带的一个单胞

    Fig. 1.  (a) Top and side view of atomic structure for 2D FGT monolayer, the shaded region indicates the cutting nanoribbon NR(n); (b) the FGT nanoribbon with width n = 9, and the black dashed-line box represents the unit cell of NR(9).

    图 2  退火模拟前后的FGT纳米带的结构图 (a) NR(4); (b) NR(5); (c) NR(6); (d) NR(8); (e) NR(9)

    Fig. 2.  The ribbon structures before and after annealing simulation: (a) NR(4); (b) NR(5); (c) NR(7); (d) NR(8); (e) NR(9).

    图 3  自旋极化电荷密度 (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8)和(e) NR(9), 等值面值取为0.01|e–3

    Fig. 3.  The spin-polarized charge density: (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8), and (e) NR(9), the isosurface value is set as 0.01|e–3.

    图 4  投影能带结构 (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8)和(e) NR(9); (f)不同宽度NR(n)的磁性原子的平均磁矩, 其中n为FGT纳米带的宽度

    Fig. 4.  The projected band structure for (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8), and (e) NR(9), respectively; (f) magnetic moment per magnetic atom for NR(n) versus ribbon widths, where n represents the width of the FGT nanoribbons.

    图 5  不同FGT纳米带的总态密度(DOS)、投影态密度(PDOS)以及费米能级上的自旋极化率 (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8) 和 (e) NR(9); (f) 不同宽度纳米带NR(n)的在费米能级上自旋极化率SPF, 其中n为FGT纳米带的宽度

    Fig. 5.  The DOS and PDOS for (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8), and (e) NR(9); (f) the spin polarity efficiency at the Fermi level (SPF) for ribbons with various different widths NR(n), where n represents the width of the FGT nanoribbons.

    图 6  应变效应 (a) 对NR(9)施加拉伸应力的模型图, 仅铁磁基态下被考虑; (b)施加不同应变时的态密度(DOS)变化情况; (c)费米能级上的自旋极化率SPF 随应变的变化; (d)磁矩(M)和磁化能(EM)随应变的变化

    Fig. 6.  Strain effects: (a) The schematic for NR(9) applied by stretching strain, only the FM ground state is taken into account; (b) the DOS versus strains; (c) the spin polarity efficiency at the Fermi level SPF versus strains; (d) the magnetic moment (M) and magnetize energy (EM) versus strains.

    表 1  FGT纳米带的结合Eb(单位: eV/atom), 磁化能EM (单位: meV/atom)和费米能级上的自旋极化率SPF(%), MM 和HM分别表示磁金属和半金属

    Table 1.  The binding energy Eb (in eV/atom), magnetic energy EM (in meV /atom), and spin polarized efficiency SPF(%) for FGT nanoribbons, MM and HM represent the magnetic metal and half-metal, respectively.

    StructureNR(4)NR(5)NR(6)NR(8)NR(9)
    Eb–4.472–4.545–4.590–4.648–4.665
    EM132.958135.814186.930130.815129.212
    SPF29.57010055.91811.57366.823
    Magnetic phaseMMHMMMMMMM
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva1 I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451Google Scholar

    [3]

    Zhang M, Wang X X, Cao W Q, Yuan J, Cao M S 2019 Adv. Opt. Mater. 7 1900689Google Scholar

    [4]

    Zeng Y, Wu D, Cao X, Zhou W, Tang L, Chen K 2019 Adv. Funct. Mater. 531 1800390Google Scholar

    [5]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [6]

    Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [7]

    Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Rubio A 2014 Phys. Rev. B 90 121408Google Scholar

    [8]

    Latzke D W, Zhang W, Suslu A, Chang T R, Lin H, Jeng H T, Lanzara A 2015 Phys. Rev. B 91 235202Google Scholar

    [9]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [10]

    Kuang W, Hu R, Fan Z, Zhang Z 2019 Nanotechnology 30 145201Google Scholar

    [11]

    Blase X, Rubio A, Louie S G, Cohen M L 1995 Phys. Rev. B 51 6868

    [12]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [13]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [14]

    Efetov D K, Wang L, Handschin C, Efetov K B, Shuang J, Cava R, Kim P 2016 Nature Phys. 12 328Google Scholar

    [15]

    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar

    [16]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262Google Scholar

    [17]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Xie B P 2014 Nat. Commun. 5 5044Google Scholar

    [18]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Ding H, Ou Y B, Deng B, Chang K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [19]

    Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K 2006 Eur. J. Inorg. Chem. 2006 1561Google Scholar

    [20]

    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Zou J 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [21]

    Zhuang H L, Xie Y, Kent P R C, Ganesh P, 2015 Phys. Rev. B 92 035407Google Scholar

    [22]

    Siberchicot B, Jobic S, Carteaux V, Gressier P, Ouvrard G 1996 J. Phys. Chem. 100 5863Google Scholar

    [23]

    Gong C 2017 Nature 546 265Google Scholar

    [24]

    Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K 2006 Chem. Inform. 37 1561

    [25]

    Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [26]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Wang J 2018 Nature 563 94Google Scholar

    [27]

    Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michiola C, Fang M 2013 J. Phys. Soc. Jpn. 82 124711Google Scholar

    [28]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Wu W 2018 Nature Mater. 17 778Google Scholar

    [29]

    Wang Y, Xian C, Wang J, Liu B, Ling L, Zhang L, Xiong Y 2017 Phys. Rev. B 96 134428Google Scholar

    [30]

    Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Xie D 2018 Sci. Adv. 4 6791Google Scholar

    [31]

    Gan Y, Sun L, Banhart F 2008 Small 4 587Google Scholar

    [32]

    Son Y W, Cohen M L, Louie S G 2006 Phys Rev. Lett 97 216803Google Scholar

    [33]

    Botello-Méndez A R, López-Urías F, Terrones M, Terrones H 2008 Nano Lett. 8 1562Google Scholar

    [34]

    Zhang R Y, Zheng J M, Jiang Z Y 2018 Chin. Phys. Lett. 35 017302Google Scholar

    [35]

    Han X, Morgan Stewart H, Shevlin S A, Catlow C R A Guo Z X 2014 Nano Lett. 14 4607Google Scholar

    [36]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [37]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [38]

    Wu D, Cao X, Chen S, Tang L, Feng Y, Chen K, Zhou W 2019 J. Mater. Chem. A 7 19037Google Scholar

    [39]

    Zhang H L, Sun L, Han J N 2017 Acta Phys. Sin. 66 246101

    [40]

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 物理学报 66 246101Google Scholar

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 246101Google Scholar

    [41]

    Hashmi A, Hong J 2017 物理学报 66 238501Google Scholar

    Hashmi A, Hong J 2017 J. Phys. Chem. C 66 238501Google Scholar

    [42]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745

  • [1] 王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏. 二维NiBr2单层自旋电子输运以及光电性质. 物理学报, 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [2] 苏欣, 黄天烨, 王军转, 刘媛, 郑有炓, 施毅, 王肖沐. 圆偏振光伏效应. 物理学报, 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498
    [3] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [4] 李野华, 范志强, 张振华. 非金属原子边缘修饰InSe纳米带的磁电子学特性及应变调控. 物理学报, 2019, 68(19): 198503. doi: 10.7498/aps.68.20190547
    [5] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [7] 刘娟, 胡锐, 范志强, 张振华. 过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应. 物理学报, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [8] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [9] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤. 氢化铁的自旋极化效应及势能函数. 物理学报, 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [10] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性. 物理学报, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [11] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响. 物理学报, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [12] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [13] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [14] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究. 物理学报, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [15] 杨 光, P. V. Santos. 声表面波对GaAs(110)量子阱发光特性的调制. 物理学报, 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [16] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [17] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [18] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [19] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  14191
  • PDF下载量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2019-08-10
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回