Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of driving-laser wavelength on emission of high-order harmonic wave generated by atoms irradiated by ultrashort laser pulse

Zhang Di-Yu Lan Wen-Di Li Xue-Feng Zhang Su-Su Guo Fu-Ming Yang Yu-Jun

Citation:

Influence of driving-laser wavelength on emission of high-order harmonic wave generated by atoms irradiated by ultrashort laser pulse

Zhang Di-Yu, Lan Wen-Di, Li Xue-Feng, Zhang Su-Su, Guo Fu-Ming, Yang Yu-Jun
PDF
HTML
Get Citation
  • With the numerical solution of the time-dependent Schrodinger equation, we theoretically investigate the high-order harmonic emissions generated by the atoms irradiated by the ultrashort lasers with different wavelengths but the same pondermotive energy. As the driving-laser wavelength increases, the intensity of the high-harmonic emission decreases. Comparing with the harmonic spectra of atoms driven by a 1000-nm-wavelength laser pulse, a new peak structure appears in the spectra of atoms driven by a 5000-nm-wavelength laser wavelength. It is shown by the time-frequency analysis of the harmonic emission, the time-dependent evolution of the electron density, and the time-dependent population analysis of the eigenstate, that the physical mechanism behind the new peak appearing in the harmonic spectra is the interference between the harmonic emission generated by the electrons ionized out of the excited atoms returning to the parent ions and the harmonic emissions resulting from the ground state ionization.
      Corresponding author: Yang Yu-Jun, yangyj@jlu.edu.cn
    • Funds: Project supported by the National Major Research Plan of China (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 12074145, 11627807, 11774129)
    [1]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389Google Scholar

    [2]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [3]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601Google Scholar

    [4]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

    [5]

    Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2022 Opt. Express 30 9971Google Scholar

    [6]

    Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, Cheng Y 2021 Chin. Phys. Lett. 38 123301Google Scholar

    [7]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202Google Scholar

    [8]

    Li X F, l’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751Google Scholar

    [9]

    Altucci C, Velotta R, Heesel E, Springate E, Marangos J P, Vozzi C 2006 Phys. Rev. A 73 043411Google Scholar

    [10]

    Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S, Itatani J 2014 Nat. Commun. 5 3331Google Scholar

    [11]

    Silva F, Teichmann S M, Cousin S L, Hemmer M, Biegert J 2015 Nat. Commun. 6 6611Google Scholar

    [12]

    Marangos J P 2016 J. Phys. B 49 132001Google Scholar

    [13]

    Dennis F G, Michael T, Elisabeth R S, Zhang X S, Benjamin R G, Christina L P, Robert K J, Charles B, Daniel E A, Henry C K, Margaret M, Murnane, Giulia F M 2017 Nat. Photonics 11 259Google Scholar

    [14]

    Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A 2018 Sci. Rep. 8 8677

    [15]

    Avner F, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar

    [16]

    Kfier O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99Google Scholar

    [17]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar

    [18]

    Donnelly T D, Ditmire T, Neuman K, Perry M, Falcone R. W 1996 Phys. Rev. Lett. 76 2472Google Scholar

    [19]

    Popmintchev T, Chen M Y, Popmintchevpaul D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [20]

    Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 70Google Scholar

    [21]

    Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [22]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Mullerm H G, Büttiker M, Keller R U 2008 Science 322 1525Google Scholar

    [23]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [24]

    Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790Google Scholar

    [25]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [26]

    Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B 49 142001Google Scholar

    [27]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 4 509

    [28]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817821Google Scholar

    [29]

    Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755Google Scholar

    [30]

    Krebs M, Hädrich S, Demmler S, Rothhardt J, Zair A, Chipperfield L, Limpert J, Tünnermann A 2013 Nat. Photonics 7 555Google Scholar

    [31]

    Liang H k, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Kärtner F X, Hong K H 2017 Nat. Commun. 8 141Google Scholar

    [32]

    Labaye F, Gaponenko M, Modsching N, Brochard P, Paradis C, Schilt S, Wittwer V J, Südmeyer T 2019 IEEE J. Sel. Top. Quantum Electron. 25 880619Google Scholar

    [33]

    Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J 2015 Prog. Quantum. Electron. 43 1Google Scholar

    [34]

    Musheghyan M, Geetha P P, Faccialà D, Pusala A, Crippa G, Campolo A, Ciriolo A G, Devetta M, Assion A, Manzoni C, Vozzi C, Stagira S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185402Google Scholar

    [35]

    Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M, Zhang J 2019 Phys. Rev. Appl. 12 054024Google Scholar

    [36]

    Tomilov S, Hoffmann M, Wang Y, Saraceno C J 2021 J. Phys.: Photonics 3 022002Google Scholar

    [37]

    Grafenstein L von, Bock M, Ueberschaer D, Escoto E, Koç A, Zawilski K, Schunemann P, Griebner U, Elsaesser T 2020 Opt. Lett. 45 5998Google Scholar

    [38]

    Tian K, He L, Yang X, Liang H 2021 Photonics 8 290Google Scholar

    [39]

    Feng T, Heilmann A, Bock M, Ehrentraut L, Witting T, Yu H H, Stiel H, Eisebitt S, Schnürer M 2020 Opt. Express 28 8724Google Scholar

    [40]

    Leshchenko V E, Talbert B K, Lai Y H, Li S, Tang Y, Hageman S J, Smith G, Agostini P, DiMauro L F, Blaga C I 2020 Optica 7 981Google Scholar

    [41]

    Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Philos. Trans. R. Soc. London, Ser. A 377 20180384Google Scholar

    [42]

    Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking M J J, Elsaesser T, Nibbering E T J, Rouzée A 2019 J. Phys. Chem. Lett. 10 52Google Scholar

    [43]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optics 7 168

    [44]

    Duchon C E 1979 J. Appl. Meteorol. Clim. 18 1016Google Scholar

    [45]

    Qiao Y, Wu D, Chen J G, Wang J, Guo F M, Yang Y J 2019 Phys. Rev. A 100 06342

    [46]

    Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M, Yang Y J 2015 Phys. Rev. A 92 033848Google Scholar

    [47]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203Google Scholar

    [48]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 6 1537

    [49]

    Guo F M, Yang Y J, Jin M X, Ding D J, Zhu Q R 2009 Chin. Phys. Lett. 26 053201Google Scholar

    [50]

    Serebryannikov E E, Zheltikov A M 2016 Phys. Rev. Lett. 116 123901Google Scholar

    [51]

    Chen J, Zeng B, Liu X, Cheng Y, Xu Z 2009 New J. Phys. 11 113021Google Scholar

  • 图 1  波长为1000 nm (黑色点线)和5000 nm (红色实线)的驱动激光与原子作用产生的高次谐波发射

    Figure 1.  High-order harmonic generated from an atom irradiated by the driving lasers with wavelengths of 1000 nm (black dotted line) and 5000 nm (red solid line)

    图 2  Keldysh参数为0.3, 波长为1000−5000 nm的驱动激光与原子作用产生的高次谐波发射随波长的改变

    Figure 2.  When the Keldysh parameter is 0.3, the variation of the high-order harmonic radiation intensity with the driving laser wavelength in the 1000−5000 nm range

    图 3  波长为1000 nm的驱动激光与原子作用产生的高次谐波发射的时间行为, 图中黑色和紫色实线为经典三步模型计算的发光能量

    Figure 3.  Temporal behavior of high-order harmonic generated by the atom irradiated by the driving laser with a wavelength of 1000 nm, the black and purple line represent the energy calculated by the simple man model

    图 4  (a)波长为5000 nm的驱动激光与原子作用产生的高次谐波发射的时间行为; (b)电子的概率密度随着时间的变化

    Figure 4.  (a) Temporal behavior of high-order harmonic generated by the irradiated by the driving laser with a wavelength of 5000 nm; (b) variation of electron probability density with time

    图 5  (a)波长为1000 nm和(b) 5000 nm驱动激光辐照原子的激发态布居(红色点线)和电离态布居(黑色实线)随着时间的变化

    Figure 5.  Variation of excited states population (red dotted line) and continuum states population (black solid line) of atoms irradiated with a driving laser at a wavelength of (a) 1000 nm and (b) 5000 nm with time

    图 6  利用谐波能量2.5—4.0 a.u.的谐波发射合成的超短脉冲强度随着时间的改变

    Figure 6.  Variation of intensity of ultrashort pulses (synthesized by harmonic emission with harmonic energy 2.5–4.0 a.u.)with time

  • [1]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389Google Scholar

    [2]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [3]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601Google Scholar

    [4]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

    [5]

    Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2022 Opt. Express 30 9971Google Scholar

    [6]

    Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, Cheng Y 2021 Chin. Phys. Lett. 38 123301Google Scholar

    [7]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202Google Scholar

    [8]

    Li X F, l’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751Google Scholar

    [9]

    Altucci C, Velotta R, Heesel E, Springate E, Marangos J P, Vozzi C 2006 Phys. Rev. A 73 043411Google Scholar

    [10]

    Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S, Itatani J 2014 Nat. Commun. 5 3331Google Scholar

    [11]

    Silva F, Teichmann S M, Cousin S L, Hemmer M, Biegert J 2015 Nat. Commun. 6 6611Google Scholar

    [12]

    Marangos J P 2016 J. Phys. B 49 132001Google Scholar

    [13]

    Dennis F G, Michael T, Elisabeth R S, Zhang X S, Benjamin R G, Christina L P, Robert K J, Charles B, Daniel E A, Henry C K, Margaret M, Murnane, Giulia F M 2017 Nat. Photonics 11 259Google Scholar

    [14]

    Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A 2018 Sci. Rep. 8 8677

    [15]

    Avner F, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar

    [16]

    Kfier O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99Google Scholar

    [17]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar

    [18]

    Donnelly T D, Ditmire T, Neuman K, Perry M, Falcone R. W 1996 Phys. Rev. Lett. 76 2472Google Scholar

    [19]

    Popmintchev T, Chen M Y, Popmintchevpaul D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [20]

    Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 70Google Scholar

    [21]

    Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [22]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Mullerm H G, Büttiker M, Keller R U 2008 Science 322 1525Google Scholar

    [23]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [24]

    Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790Google Scholar

    [25]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [26]

    Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B 49 142001Google Scholar

    [27]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 4 509

    [28]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817821Google Scholar

    [29]

    Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755Google Scholar

    [30]

    Krebs M, Hädrich S, Demmler S, Rothhardt J, Zair A, Chipperfield L, Limpert J, Tünnermann A 2013 Nat. Photonics 7 555Google Scholar

    [31]

    Liang H k, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Kärtner F X, Hong K H 2017 Nat. Commun. 8 141Google Scholar

    [32]

    Labaye F, Gaponenko M, Modsching N, Brochard P, Paradis C, Schilt S, Wittwer V J, Südmeyer T 2019 IEEE J. Sel. Top. Quantum Electron. 25 880619Google Scholar

    [33]

    Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J 2015 Prog. Quantum. Electron. 43 1Google Scholar

    [34]

    Musheghyan M, Geetha P P, Faccialà D, Pusala A, Crippa G, Campolo A, Ciriolo A G, Devetta M, Assion A, Manzoni C, Vozzi C, Stagira S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185402Google Scholar

    [35]

    Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M, Zhang J 2019 Phys. Rev. Appl. 12 054024Google Scholar

    [36]

    Tomilov S, Hoffmann M, Wang Y, Saraceno C J 2021 J. Phys.: Photonics 3 022002Google Scholar

    [37]

    Grafenstein L von, Bock M, Ueberschaer D, Escoto E, Koç A, Zawilski K, Schunemann P, Griebner U, Elsaesser T 2020 Opt. Lett. 45 5998Google Scholar

    [38]

    Tian K, He L, Yang X, Liang H 2021 Photonics 8 290Google Scholar

    [39]

    Feng T, Heilmann A, Bock M, Ehrentraut L, Witting T, Yu H H, Stiel H, Eisebitt S, Schnürer M 2020 Opt. Express 28 8724Google Scholar

    [40]

    Leshchenko V E, Talbert B K, Lai Y H, Li S, Tang Y, Hageman S J, Smith G, Agostini P, DiMauro L F, Blaga C I 2020 Optica 7 981Google Scholar

    [41]

    Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Philos. Trans. R. Soc. London, Ser. A 377 20180384Google Scholar

    [42]

    Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking M J J, Elsaesser T, Nibbering E T J, Rouzée A 2019 J. Phys. Chem. Lett. 10 52Google Scholar

    [43]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optics 7 168

    [44]

    Duchon C E 1979 J. Appl. Meteorol. Clim. 18 1016Google Scholar

    [45]

    Qiao Y, Wu D, Chen J G, Wang J, Guo F M, Yang Y J 2019 Phys. Rev. A 100 06342

    [46]

    Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M, Yang Y J 2015 Phys. Rev. A 92 033848Google Scholar

    [47]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203Google Scholar

    [48]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 6 1537

    [49]

    Guo F M, Yang Y J, Jin M X, Ding D J, Zhu Q R 2009 Chin. Phys. Lett. 26 053201Google Scholar

    [50]

    Serebryannikov E E, Zheltikov A M 2016 Phys. Rev. Lett. 116 123901Google Scholar

    [51]

    Chen J, Zeng B, Liu X, Cheng Y, Xu Z 2009 New J. Phys. 11 113021Google Scholar

  • [1] Yao Xiao-Dai, Wu Shuang, Zhao Rui, Wu Miao-Xin, Liu Hang, Jin Guang-Yong, Yu Yong-Ji. 3.4 μm mid-infrared pulse train laser based on stepped acousto-optic Q-switched external cavity pumped MgO:PPLN optical parametric oscillator. Acta Physica Sinica, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [3] Chen Gao. Isolated attosecond pulse generation from helium atom irradiated by a three-color laser pulse. Acta Physica Sinica, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [4] Han Lin, Miao Shu-Li, Li Peng-Cheng. Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field. Acta Physica Sinica, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [5] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [6] Huang Feng, Li Peng-Cheng, Zhou Xiao-Xin. Isolated attosecond pulse generated by a model helium atom exposed to the combined field. Acta Physica Sinica, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [7] Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun, Cheng Chao. Isolated intense sub-30-as pulse generation by quantum path control in the three-color laser pulse. Acta Physica Sinica, 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [8] Xia Chang-Long, Liu Xue-Shen. Generating isolated attosecond pulses at an arbitrary angle of the two-color polarized laser pulse. Acta Physica Sinica, 2012, 61(4): 043303. doi: 10.7498/aps.61.043303
    [9] Lu Ying-Ying, Zeng Zhi-Nan, Zheng Ying-Hui, Zou Pu, Liu Can-Dong, Gong Cheng, Li Ru-Xin, Xu Zhi-Zhan. Macroscopic effects of high-order harmonic and isolated attosecond pulse generation driven by two-color laser field. Acta Physica Sinica, 2011, 60(10): 103202. doi: 10.7498/aps.60.103202
    [10] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [11] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [12] Chen Yang, Chen Ji-Gen, Yang Yu-Jun. Isolated intense 39 attosecond pulse generatedby adding a harmonic pulse. Acta Physica Sinica, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [13] Cheng Chun-Zhi, Zhou Xiao-Xin, Li Peng-Cheng. The wavelength dependence of high-order harmonic generationand attosecond pulses from atom in infrared laser field. Acta Physica Sinica, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [14] Luo Mu-Hua, Zhang Qiu-Ju, Yan Chun-Yan. Optimization of attosecond pulses from the interaction of ultrarelativistic laser with overdense plasma. Acta Physica Sinica, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [15] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [16] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [17] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [18] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Single attosecond pulse generation by tightly focused laser beam-electron interaction. Acta Physica Sinica, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [19] Zheng Jun, Sheng Zheng-Ming, Zhang Jie. Attosecond pulses emitted by a single energetic electron traversing an intense laser beam. Acta Physica Sinica, 2005, 54(6): 2638-2644. doi: 10.7498/aps.54.2638
    [20] Zeng Zhi-Nan, Li Ru-Xin, Xie Xin-Hua, Xu Zhi-Zhan. High-order harmonic attosecond pulses driven by a two-pulse laser. Acta Physica Sinica, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
Metrics
  • Abstract views:  4537
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2022
  • Accepted Date:  17 May 2022
  • Available Online:  16 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回