Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of photonic reservoir computing using short internal cavity laser

Zhao Tong Xie Wen-Li Xu Jun-Wei Jia Zhi-Wei

Citation:

Optimization of photonic reservoir computing using short internal cavity laser

Zhao Tong, Xie Wen-Li, Xu Jun-Wei, Jia Zhi-Wei
PDF
HTML
Get Citation
  • With the advent of the high-speed information age and the explosive growth of the information, higher requirements have been placed on the information processing speed. In recent years, the delay-based reservoir computing (RC) systems have been extensively investigated. Meanwhile, the information processing rate is improved mainly around the replacement of nonlinear nodes in the system. Nevertheless, as the most commonly used distributed feedback semiconductor (DFB) laser, many researchers only use ordinary commercial DFB products for research, and they have not noticed the improvement of RC performance caused by changes in internal parameters of laser. With the development of photonic integration technology, the processing technology of DFB turns more mature, so that the size of DFB can be fabricated in a range of 100 μm–1 mm when it still generates laser, and the photon lifetime of the laser will also change. The shorter photon lifetime in the laser leads to a faster dynamic response, which has the potential to process the information at a higher rate in the RC system. According to the laser rate equation (Lang-Kobayashi), changing the internal cavity length will affect the feedback strength, injection strength and other parameters required for the laser to enter into each dynamic state, which in turn affects the parameter space required for the RC system to exhibit high performance. According to this, we study the relationship between the internal cavity length (120 μm–900 μm) and the information processing rate of the RC system. In addition, the influences of different internal cavity lengths on the parameter space of the RC system are analyzed. The results show that when the internal cavity length is in a range from 120 μm to 171 μm, the system can achieve 20-Gbps low-error information processing. It is worth noting that when the internal cavity length decreases from 600 μm to 128 μm, the parameter space with better prediction performance of the RC system is greatly improved. When performing the Santa-Fe chaotic time series prediction task, the normalized mean square error (NMSE) is less than 0.01, and the parameter range of the injection strength is increased by about 22%. The range of parameter with NMSE no more than 0.1 is improved by nearly 40% for the 10th order nonlinear auto-regressive moving average (NARMA-10) task. When the number of virtual nodes is 50, the system can achieve a high-precision prediction for the above two tasks. This is of great significance for the practical development of the system.
      Corresponding author: Jia Zhi-Wei, jiazhiwei@tyut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB1803500), the National Natural Science Foundation of China (Grant Nos. 61705160, 61961136002, 61875147, 62075154), the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123183), and the Shanxi “1331 Project” Key Innovative Research Team.
    [1]

    Lukosevicius M, Jaeger H 2009 Comput. Sci. Rev. 3 127Google Scholar

    [2]

    Maass W, Natschläger T, Markram H 2002 Neural Comput 14 2531Google Scholar

    [3]

    Jaeger H, Haas H 2004 Science 304 78Google Scholar

    [4]

    Sunada S, Uchida A 2021 Optica 8 1388Google Scholar

    [5]

    Nakajima M, Tanaka K, Hashimoto T 2021 Commun. Phys. 4 20Google Scholar

    [6]

    Pearlmutter B A 1995 IEEE Trans. Neural Networks 6 1212Google Scholar

    [7]

    Bishop C M 2006 (New York: Springer-Verlag)

    [8]

    Appeltant L, Soriano M C, Van D S G, Danckaert J, Massar S, Dambre J, Schrauwen B, Mirasso C R, Fisher I 2011 Nat. Commun. 2 468Google Scholar

    [9]

    Haynes N D, Soriano M C, Rosin D P, Fischer I, Gauthier D J 2015 Phys. Rev. E 91 020801Google Scholar

    [10]

    Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M, Massar S 2012 Sci. Rep. 2 287Google Scholar

    [11]

    Du W, Li C H, Huang Y X, Zou J H, Luo L Z, Teng C H, Kuo H C, Wu J, Wang Z M 2022 IEEE Electron Device Lett. 43 406Google Scholar

    [12]

    Kanno K, Uchida A 2022 Sci. Rep. 12 3720Google Scholar

    [13]

    Soriano M C, Ortín S, Brunner D, Larger L, Mirasso C R, Fischer I, Pesquera L 2013 Opt. Express 21 12Google Scholar

    [14]

    Duport F, Schneider B, Smerieri A, Haelterman M, Massar S 2012 Opt. Express 20 22783Google Scholar

    [15]

    Genty G, Salmela L, Dudley J M, Brunner D, Kokhanovskiy, Kobtsev S, Turitsyn S K 2020 Nat. Photonics 15 91Google Scholar

    [16]

    花飞, 方捻, 王陆唐 2019 物理学报 68 224205Google Scholar

    Hua F, Fang N, Wang L T 2019 Acta Phys. Sin. 68 224205Google Scholar

    [17]

    刘奇, 李璞, 开超, 胡 春强, 蔡强, 张建国, 徐兵杰 2021 物理学报 70 154209Google Scholar

    Liu Q, Li P, Kai C, Hu C Q, Cai Q, Zhang J G, Xu B J 2021 Acta Phys. Sin. 70 154209Google Scholar

    [18]

    Argyris A, Schwind J, Fischer I 2021 Sci. Rep 11 6701Google Scholar

    [19]

    Tanaka G, Yamane T, Héroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D, Hirose A 2019 Neural Networks 115 100Google Scholar

    [20]

    Lugnan A, Katumba A, Laporte F, Freiberger M, Bienstman P 2020 APL Photonics 5 020901Google Scholar

    [21]

    Cai Q, Guo Y, Li P, Bogris A, Wang Y 2021 Photonics Res 9 14Google Scholar

    [22]

    Brunner D, Soriano M C, Mirasso C R, Fischer I 2013 Nat. Commun 4 1364Google Scholar

    [23]

    Nguimdo R M, Verschaffelt G, Danckaert J, Guy V D S 2015 IEEE Trans. Neural Networks Learn. Syst 26 3301Google Scholar

    [24]

    Vatin J, Rontani D, Sciamanna M 2018 Opt. Lett 43 4497Google Scholar

    [25]

    Nguimdo R M, Erneux T 2019 Opt. Lett 44 49Google Scholar

    [26]

    Bogris A, Mesaritakis C, Deligiannidis S, Li P 2020 IEEE J. Sel. Top. Quantum Electron 27 1Google Scholar

    [27]

    Guo X X, Xiang S Y, Zhang Y H, Lin L, Wen A J, Hao Y 2020 IEEE J. Sel. Top. Quantum Electron 26 1Google Scholar

    [28]

    Huang Y, Zhou P, Yang Y, Li N Q 2021 Opt. Lett 46 6035Google Scholar

    [29]

    Kuriki Y, Nakayama J, Takano K, Uchia A 2018 Opt. Express 26 5777Google Scholar

    [30]

    Wang D, Wang L, Zhao T, Gao H, Wang Y, Chen X, Wang A 2017 Opt. Express 25 10911Google Scholar

    [31]

    Argyris A, Bueno J, Fischer I 2018 Sci. Rep 8 8487Google Scholar

    [32]

    Hou Y S, Xia G Q, Yang W Y, Wang D, Jayaprasath E, Jiang Z F, Hu C X, Wu Z M 2018 Opt. Express 26 10211Google Scholar

    [33]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron 16 347Google Scholar

    [34]

    Ohtsubo J 2017 Springer Series in Optical Sciences (USA)

    [35]

    Berre M L, Ressayre E, Talleta A, Gibbs H M, Kaplan D L, Rose M H 1987 Phys. Rev. A 35 4020Google Scholar

    [36]

    Jaeger H 2002 Conference and Workshop on Neural Information Processing Systems Vancouver Canada, Nips December 9–14, 2002 p609

    [37]

    Yue D Z, Wu Z M, Hou Y S, Hu C X, Xia G Q 2021 IEEE Photonics J 13 1Google Scholar

    [38]

    Estébanez I, Schwind J, Fischer I, Argyris A 2020 Nanophotonics 9 4163Google Scholar

  • 图 1  基于半导体激光器的延时型储备池计算系统示意图

    Figure 1.  Schematic diagram of a time-delayed reservoir computing system based on semiconductor laser.

    图 2  DFB激光器随着反馈强度变化的分岔图 (a) l = 128 μm; (b) l = 300 μm; (c) l = 600 μm. I = 1.05Ith, τ = 0.2 ns

    Figure 2.  The bifurcation diagram of the DFB laser as a function of feedback strength κf: (a) l = 128 μm; (b) l = 300 μm; (c) l = 600 μm. I = 1.05Ith, τ = 0.2 ns.

    图 3  基于Santa-Fe混沌时间序列预测任务的 (a) 不同信息处理速率下内腔长度对处理效果的影响, (b) 内腔长度与信息处理速率参数空间中NMSEs的二维图. I = 1.05Ith, M = 50, κinj = 0.5, κf = 0.5%, Δv = 20 GHz

    Figure 3.  Based on Santa-Fe chaotic time series prediction task: (a) The influence of internal cavity length on processing effect under different information processing rate; (b) two dimensional maps of NMSEs in parameter space of internal cavity length and information processing rate. I = 1.05Ith, M = 50, κinj = 0.5, κf = 0.5%, Δv = 20 GHz.

    图 4  基于NARMA-10任务的 (a) 不同信息处理速率下内腔长度对处理效果的影响, (b) 在内腔长度与信息处理速率参数空间中NMSEs的二维图. I = 1.05Ith, M = 50, κinj = 0.5, κf = 0.5%, Δv = 20 GHz

    Figure 4.  Based on NARMA-10 task: (a) The influence of internal cavity length on processing effect under different information processing rate; (b) two dimensional maps of NMSEs in parameter space of internal cavity length and information processing rate. I = 1.05Ith, M = 50, κinj = 0.5, κf = 0.5%, Δv = 20 GHz.

    图 5  不同虚拟节点数下内腔长度对NMSE的影响 (a) Santa-Fe混沌时间序列预测任务; (b) NARMA-10任务. I = 1.05 Ith, M = 50, κinj = 0.5, κf = 1%, Δv = 20 GHz

    Figure 5.  The influence of internal cavity length on NMSE under different numbers of virtual nodes: (a) Santa-Fe chaotic time series prediction task; (b) NARMA-10 task. I = 1.05 Ith, M = 50, κinj = 0.5, κf = 1%, Δv = 20 GHz.

    图 6  在内腔长度与频率失谐参数空间中NMSEs的二维图 (a) Santa-Fe混沌时间序列预测任务; (b) NARMA-10任务. I = 1.05 Ith, M = 50, κinj = 0.5, κf = 0.5%

    Figure 6.  Two dimensional maps of NMSEs in parameter space of internal cavity length and frequency detuning: (a) Santa-Fe chaotic time series prediction task; (b) NARMA-10 task. I = 1.05 Ith, M = 50, κinj = 0.5, κf = 0.5%.

    图 7  不同内腔长度下注入强度和反馈强度对NMSE的影响 (a), (b) l = 128 μm; (c), (d) l = 300 μm; (e), (f) l = 600 μm. 从上到下: Santa-Fe混沌时间序列预测任务、NARMA-10任务. I = 1.05 Ith, M = 50, Δv = 20 GHz

    Figure 7.  The influence of injection strength and feedback strength on NMSE under different internal cavity length: (a), (b) l = 128 μm; (c), (d) l = 300 μm; (e), (f) l = 600 μm. From top to bottom: Santa-Fe chaotic time series prediction task, NARMA-10 task. I = 1.05 Ith, M = 50, Δv = 20 GHz.

    表 1  数值模拟中DFB的部分参数

    Table 1.  Partial parameters of DFB in numerical simulation.

    符号参数参考值
    α线宽增强因子4
    g/ns–1增益系数1.2 × 10–5
    N0透明载流子数1.5 × 108
    ε/m3增益饱和系数5 × 10–23
    τs/ns载流子寿命2
    λ0/nm波长1550
    D/ns–1自发辐射噪声强度30
    Einj, 0注入电场平均幅度100
    bbias偏置项0.5
    DownLoad: CSV
  • [1]

    Lukosevicius M, Jaeger H 2009 Comput. Sci. Rev. 3 127Google Scholar

    [2]

    Maass W, Natschläger T, Markram H 2002 Neural Comput 14 2531Google Scholar

    [3]

    Jaeger H, Haas H 2004 Science 304 78Google Scholar

    [4]

    Sunada S, Uchida A 2021 Optica 8 1388Google Scholar

    [5]

    Nakajima M, Tanaka K, Hashimoto T 2021 Commun. Phys. 4 20Google Scholar

    [6]

    Pearlmutter B A 1995 IEEE Trans. Neural Networks 6 1212Google Scholar

    [7]

    Bishop C M 2006 (New York: Springer-Verlag)

    [8]

    Appeltant L, Soriano M C, Van D S G, Danckaert J, Massar S, Dambre J, Schrauwen B, Mirasso C R, Fisher I 2011 Nat. Commun. 2 468Google Scholar

    [9]

    Haynes N D, Soriano M C, Rosin D P, Fischer I, Gauthier D J 2015 Phys. Rev. E 91 020801Google Scholar

    [10]

    Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M, Massar S 2012 Sci. Rep. 2 287Google Scholar

    [11]

    Du W, Li C H, Huang Y X, Zou J H, Luo L Z, Teng C H, Kuo H C, Wu J, Wang Z M 2022 IEEE Electron Device Lett. 43 406Google Scholar

    [12]

    Kanno K, Uchida A 2022 Sci. Rep. 12 3720Google Scholar

    [13]

    Soriano M C, Ortín S, Brunner D, Larger L, Mirasso C R, Fischer I, Pesquera L 2013 Opt. Express 21 12Google Scholar

    [14]

    Duport F, Schneider B, Smerieri A, Haelterman M, Massar S 2012 Opt. Express 20 22783Google Scholar

    [15]

    Genty G, Salmela L, Dudley J M, Brunner D, Kokhanovskiy, Kobtsev S, Turitsyn S K 2020 Nat. Photonics 15 91Google Scholar

    [16]

    花飞, 方捻, 王陆唐 2019 物理学报 68 224205Google Scholar

    Hua F, Fang N, Wang L T 2019 Acta Phys. Sin. 68 224205Google Scholar

    [17]

    刘奇, 李璞, 开超, 胡 春强, 蔡强, 张建国, 徐兵杰 2021 物理学报 70 154209Google Scholar

    Liu Q, Li P, Kai C, Hu C Q, Cai Q, Zhang J G, Xu B J 2021 Acta Phys. Sin. 70 154209Google Scholar

    [18]

    Argyris A, Schwind J, Fischer I 2021 Sci. Rep 11 6701Google Scholar

    [19]

    Tanaka G, Yamane T, Héroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D, Hirose A 2019 Neural Networks 115 100Google Scholar

    [20]

    Lugnan A, Katumba A, Laporte F, Freiberger M, Bienstman P 2020 APL Photonics 5 020901Google Scholar

    [21]

    Cai Q, Guo Y, Li P, Bogris A, Wang Y 2021 Photonics Res 9 14Google Scholar

    [22]

    Brunner D, Soriano M C, Mirasso C R, Fischer I 2013 Nat. Commun 4 1364Google Scholar

    [23]

    Nguimdo R M, Verschaffelt G, Danckaert J, Guy V D S 2015 IEEE Trans. Neural Networks Learn. Syst 26 3301Google Scholar

    [24]

    Vatin J, Rontani D, Sciamanna M 2018 Opt. Lett 43 4497Google Scholar

    [25]

    Nguimdo R M, Erneux T 2019 Opt. Lett 44 49Google Scholar

    [26]

    Bogris A, Mesaritakis C, Deligiannidis S, Li P 2020 IEEE J. Sel. Top. Quantum Electron 27 1Google Scholar

    [27]

    Guo X X, Xiang S Y, Zhang Y H, Lin L, Wen A J, Hao Y 2020 IEEE J. Sel. Top. Quantum Electron 26 1Google Scholar

    [28]

    Huang Y, Zhou P, Yang Y, Li N Q 2021 Opt. Lett 46 6035Google Scholar

    [29]

    Kuriki Y, Nakayama J, Takano K, Uchia A 2018 Opt. Express 26 5777Google Scholar

    [30]

    Wang D, Wang L, Zhao T, Gao H, Wang Y, Chen X, Wang A 2017 Opt. Express 25 10911Google Scholar

    [31]

    Argyris A, Bueno J, Fischer I 2018 Sci. Rep 8 8487Google Scholar

    [32]

    Hou Y S, Xia G Q, Yang W Y, Wang D, Jayaprasath E, Jiang Z F, Hu C X, Wu Z M 2018 Opt. Express 26 10211Google Scholar

    [33]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron 16 347Google Scholar

    [34]

    Ohtsubo J 2017 Springer Series in Optical Sciences (USA)

    [35]

    Berre M L, Ressayre E, Talleta A, Gibbs H M, Kaplan D L, Rose M H 1987 Phys. Rev. A 35 4020Google Scholar

    [36]

    Jaeger H 2002 Conference and Workshop on Neural Information Processing Systems Vancouver Canada, Nips December 9–14, 2002 p609

    [37]

    Yue D Z, Wu Z M, Hou Y S, Hu C X, Xia G Q 2021 IEEE Photonics J 13 1Google Scholar

    [38]

    Estébanez I, Schwind J, Fischer I, Argyris A 2020 Nanophotonics 9 4163Google Scholar

  • [1] Fang Nian, Qian Ruo-Lan, Wang Shuai. All-optical reservoir computing system based on polarization dynamics. Acta Physica Sinica, 2023, 72(21): 214205. doi: 10.7498/aps.72.20230722
    [2] Liu Qi, Li Pu, Kai Chao, Hu Chun-Qiang, Cai Qiang, Zhang Jian-Guo, Xu Bing-Jie. Short-time prediction of chaotic laser using time-delayed photonic reservoir computing. Acta Physica Sinica, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [3] Zhou Ying, Xie Shuang-Yuan, Xu Jing-Ping. Bipartite and tripartite entanglement caused by squeezed drive in magnetic-cavity quantum electrodynamics system. Acta Physica Sinica, 2020, 69(22): 220301. doi: 10.7498/aps.69.20200838
    [4] Hua Fei, Fang Nian, Wang Lu-Tang. Method of selecting operating point of reservoir computing system based on semiconductor lasers. Acta Physica Sinica, 2019, 68(22): 224205. doi: 10.7498/aps.68.20191039
    [5] Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu. New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [6] Wang Chun-Ni, Wang Ya, Ma Jun. Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica, 2016, 65(24): 240501. doi: 10.7498/aps.65.240501
    [7] Zhang Hong, Ding Jiong, Tong Qin-Ye, Cheng Qian-Liu. Mechanism of neural information processing of sound localization by interaural level difference. Acta Physica Sinica, 2015, 64(18): 188701. doi: 10.7498/aps.64.188701
    [8] Chen Xue, Liu Xiao-Wei, Zhang Ke-Ye, Yuan Chun-Hua, Zhang Wei-Ping. Quantum measurement with cavity optomechanical systems. Acta Physica Sinica, 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [9] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [10] Wen Rui-Juan, Du Jin-Jin, Li Wen-Fang, Li Gang, Zhang Tian-Cai. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms. Acta Physica Sinica, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [11] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [12] Zhang Xu-Dong, Zhu Ping, Xie Xiao-Ping, He Guo-Guang. A dynamic threshold value control method for chaotic neural networks. Acta Physica Sinica, 2013, 62(21): 210506. doi: 10.7498/aps.62.210506
    [13] Lou Zhi-Mei. The extended Prelle-Singer method for the conserved quantities of second-ordinary nonlinear coupled dynamics systems and their symmetries. Acta Physica Sinica, 2010, 59(2): 719-723. doi: 10.7498/aps.59.719
    [14] Wang Kun. Stability and approximate solution of nonlinear dynamic system of a cylinder with two end faces in relative rotation. Acta Physica Sinica, 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
    [15] Song Ke-Hui. Scheme for quantum information processing via Λ-type atoms interacting with bimodal cavity field. Acta Physica Sinica, 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [16] MA JING, TAN LI-YING, RAN QI-WEN. APPLICATION OF WAVELET ANALYSIS TO OPTICAL INFORMATION PROCESSING. Acta Physica Sinica, 1999, 48(7): 1223-1229. doi: 10.7498/aps.48.1223
    [17] XU YUN, ZHANG JIAN-XIA, DU SHI-PEI. THE JUMP STOCHASTICITY CHARACTERISTICS OF NONLI-NER FUNCTION IN THE DYNAMIC SYSTEM. Acta Physica Sinica, 1991, 40(1): 33-38. doi: 10.7498/aps.40.33
    [18] ZHUANG SONG-LIN, ZHENG QUAN. THE IRVERSE SOURCE PROBLEM IN PARTIALLY COH-ERENT OPTICAL INFORMATION PROCESSING. Acta Physica Sinica, 1985, 34(4): 439-446. doi: 10.7498/aps.34.439
    [19] Francis. T. S. YU, G. G. MU. COLOR RESTORATION OF FADED COLOR FILMS WITH WHITE-LIGHT PROCESSING. Acta Physica Sinica, 1981, 30(6): 841-848. doi: 10.7498/aps.30.841
    [20] F. T. S. YU, S. L. ZHUANQ, T. H. CHAO. A POLYCHROMATIC PROCESSING TECHNIQUE FOR COLOR IMAGE TRANSPARENCIES. Acta Physica Sinica, 1981, 30(1): 57-65. doi: 10.7498/aps.30.57
Metrics
  • Abstract views:  4214
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2022
  • Accepted Date:  29 May 2022
  • Available Online:  27 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回