Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cs-Te photocathode preparation with Te intermittent and Cs continuous deposition based on improved preparation success rate and quantum efficiency

Li Xu-Dong Jiang Zeng-Gong Gu Qiang Zhang Meng Lin Guo-Qiang Zhao Ming-Hua Guo Li

Citation:

Cs-Te photocathode preparation with Te intermittent and Cs continuous deposition based on improved preparation success rate and quantum efficiency

Li Xu-Dong, Jiang Zeng-Gong, Gu Qiang, Zhang Meng, Lin Guo-Qiang, Zhao Ming-Hua, Guo Li
PDF
HTML
Get Citation
  • In order to prepare high-quantum-efficiency semiconductor Cs-Te photocathode which can produce a high-quality electron source, based on the INFN-LASA Cs-Te photocathode preparation method, the Cs-Te photocathode preparation method with Te intermittent, Cs continuous deposition is developed. The Cs-Te photocathode with quantum efficiency greater than 5% under 265 nm UV irradiation is successfully prepared in the photocathode preparation device of SINAP and SARI, and the fabrication success rate reaches 100%. As long as the preparation chamber vacuum degree is better than 10–8 Pa, the Cs-Te photocathode with high quantum efficiency can be prepared by this preparation method, which will not be different due to the changes of preparation equipment and operators.
      Corresponding author: Li Xu-Dong, lixudong@sari.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905276, 12075302), the Natural Science Foundation of Shanghai, China (Grant No. 22ZR1470300), and the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2017SHZDZX02).
    [1]

    Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar

    [2]

    Musumeci P, Navarro J G, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar

    [3]

    向蓉, 全胜文, 林林, 丁原涛, 鲁向阳, 焦飞, 王桂梅, 赵夔 2004 高能物理与核物理 28 771Google Scholar

    Xiang R, Quan S W, Lin L, Ding Y T, Lu X Y, Jiao F, Wang G M, Zhao K 2004 High Energy Phys. Nuc. 28 771Google Scholar

    [4]

    Xiang R, Arnold A, Buettig H, Janssen D, Justus M, Lehnert U, Michel P, Murcek P, Schamlott A, Schneider Ch, Schurig R, Staufenbiel F, Teichert J 2010 Phys. Rev. Spec. Top-Ac. 13 043501Google Scholar

    [5]

    Bossert J, Ganter R, Schaer M, et al. 2014 Proceedings of the 36th International Free Electron Laser Conference Basel, Switzerland, August 25–29, 2014 THP046

    [6]

    Aryshev A, Shevelev M, Honda Y, Terunuma N, Urakawa J. 2017 Appl. Phys. Lett. 111 033508Google Scholar

    [7]

    Panuganti H, Piot P 2017 Appl. Phys. Lett. 110 093505Google Scholar

    [8]

    Pierce C M, Bae J K, Galdi A, Cultrera L, Bazarov I, Maxson J 2021 Appl. Phys. Lett. 118 124101Google Scholar

    [9]

    Kong S H, Kinross-Wright J, Nguyen D C, Sheffield R L, Weber M E 1995 Nucl. Instrum. Meth. A 358 284Google Scholar

    [10]

    Schreiber S, Lederer S, Michelato P, et al. 2018 Proceedings of the 38 th International Free-Electron Laser Conference New Mexico, USA, August 20–25 2018 WEP003

    [11]

    Huang P, Qian H, Chen Y, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30 2019 WEP062

    [12]

    Loisch G, Chen Y, Koschitzki C, et al. 2022 Appl. Phys. Lett. 120 104102Google Scholar

    [13]

    Filippetto D, Qian H, Sannibale F 2015 Appl. Phys. Lett. 107 042104Google Scholar

    [14]

    Wisniewski E E, Velazquez D, Yusof Z, Spentzouris L, Terry J, Sarkar T J, Harkay K 2013 Nucl. Instrum. Meth. A 711 60Google Scholar

    [15]

    Wisniewski E, Antipov S, Conde M, et al. 2015 Proceedings of the 6th International Particle Accelerator Conference VA, USA, May 3–8 2015 WEPTY013

    [16]

    Terunuma N, Murata A, Fukuda M, et al. 2010 Nucl. Instrum. Meth. A 613 1Google Scholar

    [17]

    Tamba T, Miyamatsu J, Sakaue K, et al. 2019 Proceedings of the 10th International Particle Accelerator Conference Melbourne, Australia, May 19–24 2019 TUPTS111

    [18]

    Kong S H, Kinross-Wright J, Nguyen D C, Sheffield R L 1995 J. Appl. Phys. 77 6031Google Scholar

    [19]

    Michelato P, Di Bona A, Pagani C, et al. 1996 Proceedings of the 5th European Particle Accelerator Conference Barcelona, Spain, June 10–14 1996 p1475

    [20]

    Dai J, Quan S W, Chang C, Liu K X, Zhao K 2012 Chin. Phys. C 36 475Google Scholar

    [21]

    Monaco L, Michelato P, Sertore D, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30 2019 WEA04

    [22]

    Chevallay E, Divall Csatari M, Doebert S, et al. 2012 Proceedings of the 3rd International Particle Accelerator Conference LA, USA, May 20–25 2012 TUPPD066

    [23]

    Gaowei M, Sinsheimer J, Strom D, et al. 2019 Phys. Rev. Accel. Beams. 22 073401Google Scholar

    [24]

    牛军, 张益军, 常本康, 等 2011 物理学报 60 044209Google Scholar

    Niu J, Zhang Y J, Chang B K, et al. 2011 Acta Phys. Sin. 60 044209Google Scholar

    [25]

    郝广辉, 韩攀阳, 李兴辉, 等 2020 物理学报 69 108501Google Scholar

    Hao G H, Han P Y, Li X H, et al. 2020 Acta Phys. Sin. 69 108501Google Scholar

    [26]

    王国建, 刘燕文, 李芬, 等 2021 物理学报 70 218503Google Scholar

    Wang J G, Liu Y W, Li F, et al. 2021 Acta Phys. Sin. 70 218503Google Scholar

    [27]

    Michelato P, Pagani C, Sertore D, di Bona A, Valeri S 1997 Nucl. Instrum. Meth. A 393 464Google Scholar

    [28]

    Sertore D, Michelato P, Monaco L, et al. 2014 J. Vac. Sci. Technol. A 32 031602Google Scholar

  • 图 1  SINAP光阴极制备装置

    Figure 1.  SINAP photocathode preparation device.

    图 2  SARI光阴极制备装置

    Figure 2.  SARI photocathode preparation device.

    图 3  Ta蒸发舟

    Figure 3.  Ta evaporation boat.

    图 4  Te, Cs顺序沉积制备Cs-Te光阴极的步骤及Mo基底上的Cs-Te光阴极

    Figure 4.  The Cs-Te photocathode preparation steps with Te, Cs sequential deposition and the Cs-Te photocathode on Mo substrate.

    图 5  Te和Cs源的沉积厚度、反射率、量子效率和真空度随时间的变化

    Figure 5.  The variation of deposition thickness, reflectivity, quantum efficiency and vacuum degree of Te and Cs evaporation sources with time.

    图 6  Cs-Te光阴极的热退火研究

    Figure 6.  Thermal annealing study of Cs-Te photocathode.

    图 7  基底和非基底上的Cs-Te光阴极, 几次制备过程中电流(光电流+暗电流)变化

    Figure 7.  The Cs-Te photocathode on substrate and non-substrate, the current (photocurrent + dark current) variation during several preparation processes.

    图 8  开缝的SS304管

    Figure 8.  The SS304 pipe with slit.

    图 9  Te断续、Cs持续沉积制备Cs-Te光阴极过程

    Figure 9.  The Cs-Te photocathode preparation process with Te intermittent, Cs continuous deposition.

    图 10  Te和Cs源的沉积厚度、反射率、量子效率和真空度随时间的变化

    Figure 10.  The variation of deposition thickness, reflectivity, quantum efficiency and vacuum degree of Te and Cs evaporation sources with time.

    图 11  Te, Cs顺序沉积与Te断续、Cs持续沉积制备Cs-Te光阴极对比

    Figure 11.  The comparison of Cs-Te photocathode preparation between with Te, Cs sequential deposition and Te intermittent, Cs continuous deposition.

    图 12  热退火Cs-Te光阴极时, 量子效率与温度的关系

    Figure 12.  The relationship between quantum efficiency and temperature during thermal annealing of Cs-Te photocathode.

    图 13  制备过程中光电流收集电路及制备好的Cs-Te光阴极

    Figure 13.  Photocurrent collection circuit during the photocathode preparation process and Cs-Te photocathode.

    图 14  Cs-Te光阴极制备过程中, 量子效率变化

    Figure 14.  The quantum efficiency changes during the Cs-Te photocathode preparation process.

    图 15  光阴极制备过程中, 光电流收集电路及制备好的Cs-Te光阴极

    Figure 15.  Photocurrent collection circuit during the photocathode preparation process and Cs-Te photocathode.

    图 16  基底在室温和100 ℃时, 光阴极制备过程中Cs-Te光阴极量子效率变化

    Figure 16.  The change of the quantum efficiency of Cs-Te photocathode during the preparation process at substrate room temperature and 100 ℃.

  • [1]

    Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar

    [2]

    Musumeci P, Navarro J G, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar

    [3]

    向蓉, 全胜文, 林林, 丁原涛, 鲁向阳, 焦飞, 王桂梅, 赵夔 2004 高能物理与核物理 28 771Google Scholar

    Xiang R, Quan S W, Lin L, Ding Y T, Lu X Y, Jiao F, Wang G M, Zhao K 2004 High Energy Phys. Nuc. 28 771Google Scholar

    [4]

    Xiang R, Arnold A, Buettig H, Janssen D, Justus M, Lehnert U, Michel P, Murcek P, Schamlott A, Schneider Ch, Schurig R, Staufenbiel F, Teichert J 2010 Phys. Rev. Spec. Top-Ac. 13 043501Google Scholar

    [5]

    Bossert J, Ganter R, Schaer M, et al. 2014 Proceedings of the 36th International Free Electron Laser Conference Basel, Switzerland, August 25–29, 2014 THP046

    [6]

    Aryshev A, Shevelev M, Honda Y, Terunuma N, Urakawa J. 2017 Appl. Phys. Lett. 111 033508Google Scholar

    [7]

    Panuganti H, Piot P 2017 Appl. Phys. Lett. 110 093505Google Scholar

    [8]

    Pierce C M, Bae J K, Galdi A, Cultrera L, Bazarov I, Maxson J 2021 Appl. Phys. Lett. 118 124101Google Scholar

    [9]

    Kong S H, Kinross-Wright J, Nguyen D C, Sheffield R L, Weber M E 1995 Nucl. Instrum. Meth. A 358 284Google Scholar

    [10]

    Schreiber S, Lederer S, Michelato P, et al. 2018 Proceedings of the 38 th International Free-Electron Laser Conference New Mexico, USA, August 20–25 2018 WEP003

    [11]

    Huang P, Qian H, Chen Y, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30 2019 WEP062

    [12]

    Loisch G, Chen Y, Koschitzki C, et al. 2022 Appl. Phys. Lett. 120 104102Google Scholar

    [13]

    Filippetto D, Qian H, Sannibale F 2015 Appl. Phys. Lett. 107 042104Google Scholar

    [14]

    Wisniewski E E, Velazquez D, Yusof Z, Spentzouris L, Terry J, Sarkar T J, Harkay K 2013 Nucl. Instrum. Meth. A 711 60Google Scholar

    [15]

    Wisniewski E, Antipov S, Conde M, et al. 2015 Proceedings of the 6th International Particle Accelerator Conference VA, USA, May 3–8 2015 WEPTY013

    [16]

    Terunuma N, Murata A, Fukuda M, et al. 2010 Nucl. Instrum. Meth. A 613 1Google Scholar

    [17]

    Tamba T, Miyamatsu J, Sakaue K, et al. 2019 Proceedings of the 10th International Particle Accelerator Conference Melbourne, Australia, May 19–24 2019 TUPTS111

    [18]

    Kong S H, Kinross-Wright J, Nguyen D C, Sheffield R L 1995 J. Appl. Phys. 77 6031Google Scholar

    [19]

    Michelato P, Di Bona A, Pagani C, et al. 1996 Proceedings of the 5th European Particle Accelerator Conference Barcelona, Spain, June 10–14 1996 p1475

    [20]

    Dai J, Quan S W, Chang C, Liu K X, Zhao K 2012 Chin. Phys. C 36 475Google Scholar

    [21]

    Monaco L, Michelato P, Sertore D, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30 2019 WEA04

    [22]

    Chevallay E, Divall Csatari M, Doebert S, et al. 2012 Proceedings of the 3rd International Particle Accelerator Conference LA, USA, May 20–25 2012 TUPPD066

    [23]

    Gaowei M, Sinsheimer J, Strom D, et al. 2019 Phys. Rev. Accel. Beams. 22 073401Google Scholar

    [24]

    牛军, 张益军, 常本康, 等 2011 物理学报 60 044209Google Scholar

    Niu J, Zhang Y J, Chang B K, et al. 2011 Acta Phys. Sin. 60 044209Google Scholar

    [25]

    郝广辉, 韩攀阳, 李兴辉, 等 2020 物理学报 69 108501Google Scholar

    Hao G H, Han P Y, Li X H, et al. 2020 Acta Phys. Sin. 69 108501Google Scholar

    [26]

    王国建, 刘燕文, 李芬, 等 2021 物理学报 70 218503Google Scholar

    Wang J G, Liu Y W, Li F, et al. 2021 Acta Phys. Sin. 70 218503Google Scholar

    [27]

    Michelato P, Pagani C, Sertore D, di Bona A, Valeri S 1997 Nucl. Instrum. Meth. A 393 464Google Scholar

    [28]

    Sertore D, Michelato P, Monaco L, et al. 2014 J. Vac. Sci. Technol. A 32 031602Google Scholar

  • [1] Wang Guo-Jian, Liu Yan-Wen, Li Fen, Tian Hong, Zhu Hong, Li Yun, Zhao Heng-Bang, Wang Xiao-Xia, Zhang Zhi-Qiang. Effect of ion-beam surface treatment on photocathode emission. Acta Physica Sinica, 2021, 70(21): 218503. doi: 10.7498/aps.70.20210587
    [2] Peng Xin-Cun, Wang Zhi-Dong, Deng Wen-Juan, Zhu Zhi-Fu, Zou Ji-Jun, Zhang Yi-Jun. Optical resonance enhanced Cs activated nano-structured Ag photocathode. Acta Physica Sinica, 2020, 69(6): 068501. doi: 10.7498/aps.69.20191420
    [3] Qiao Jian-Liang, Xu Yuan, Gao You-Tang, Niu Jun, Chang Ben-Kang. Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode. Acta Physica Sinica, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [4] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [5] Chen Xin-Long, Zhao Jing, Chang Ben-Kang, Xu Yuan, Zhang Yi-Jun, Jin Mu-Chun, Hao Guang-Hui. Comparison between exponential-doping reflection-mode GaAlAs and GaAs photocathodes. Acta Physica Sinica, 2013, 62(3): 037303. doi: 10.7498/aps.62.037303
    [6] Cai Zhi-Peng, Yang Wen-Zheng, Tang Wei-Dong, Hou Xun. Theoretical analysis of response characteristics for the large exponential-doping transmission-mode GaAs photocathodes. Acta Physica Sinica, 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [7] Zeng Peng, Yuan Zheng, Deng Bo, Yuan Yong-Teng, Li Zhi-Chao, Liu Shen-Ye, Zhao Yi-Dong, Hong Cai-Hao, Zheng Lei, Cui Ming-Qi. Spectral response calibration of Au and CsI transmission photocathodes of X-ray streak camera in a 605500 eV photon energy region. Acta Physica Sinica, 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [8] Guo Xiang-Yang, Chang Ben-Kang, Wang Xiao-Hui, Zhang Yi-Jun, Yang Ming. Photoemission stability of negative electronaffinity GaN phtocathode. Acta Physica Sinica, 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [9] Fu Xiao-Qian, Chang Ben-Kang, Li Biao, Wang Xiao-Hui, Qiao Jian-Liang. Comprehensive Survey for the Frontier Disciplines Progress of negative electron affinity GaN photocathode. Acta Physica Sinica, 2011, 60(3): 038503. doi: 10.7498/aps.60.038503
    [10] Du Xiao-Qing, Wang Xiao-Hui, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Zhang Yi-Jun, Guo Xiang-Yang. Comparison between gradient-doping and uniform-doping GaN photocathodes. Acta Physica Sinica, 2011, 60(4): 047901. doi: 10.7498/aps.60.047901
    [11] Zhang Yi-Jun, Niu Jun, Zhao Jing, Zou Ji-Jun, Chang Ben-Kang. Effect of exponential-doping structure on quantum yield of transmission-mode GaAs photocathodes. Acta Physica Sinica, 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [12] Zhao Jing, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan, Zhang Jun-Ju, Shi Feng, Cheng Hong-Chang, Cui Dong-Xu. Research on quantum efficient fitting and structure of high performance transmission-mode GaAs photocathode. Acta Physica Sinica, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [13] Guo Xiang-Yang, Du Xiao-Qing, Chang Ben-Kang, Qiao Jian-Liang, Qian Yun-Sheng, Wang Xiao-Hui. Quantum efficiency recovery of reflection-mode NEA GaN photocathode. Acta Physica Sinica, 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [14] Qiao Jian-Liang, Chang Ben-Kang, Du Xiao-Qing, Niu Jun, Zou Ji-Jun. Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode. Acta Physica Sinica, 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [15] Niu Jun, Yang Zhi, Chang Ben-Kang, Qiao Jian-Liang, Zhang Yi-Jun. Study on the model of quantum efficiency of reflective varied doping GaAs photocathode. Acta Physica Sinica, 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [16] Du Xiao-Qing, Chang Ben-Kang. Revision of quantum efficiency formula for negative electron affinity photocathodes. Acta Physica Sinica, 2009, 58(12): 8643-8650. doi: 10.7498/aps.58.8643
    [17] Li Min, Ni Qi-Liang, Chen Bo. Calculation of quantum efficiency of alkali halide photocathode materials in the extreme ultraviolet region. Acta Physica Sinica, 2009, 58(10): 6894-6901. doi: 10.7498/aps.58.6894
    [18] Yang Zhen-Ping, Li Zheng-Hong. Microwave processes in a RF photoinjector. Acta Physica Sinica, 2008, 57(5): 2627-2632. doi: 10.7498/aps.57.2627
    [19] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Gao Pin, Qiao Jian-Liang, Zeng Yi-Ping. Stability of GaAs photocathodes under different intensities of illumination. Acta Physica Sinica, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [20] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Physica Sinica, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
Metrics
  • Abstract views:  4475
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2022
  • Accepted Date:  08 May 2022
  • Available Online:  24 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回