Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field

Zhang Ying Wu Wen-Hua Wang Jian-Yuan Zhai Wei

Citation:

Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field

Zhang Ying, Wu Wen-Hua, Wang Jian-Yuan, Zhai Wei
PDF
HTML
Get Citation
  • Ultrasonic waves used in liquid alloys can produce refined grain structures, which mainly contributes to ultrasonic cavitation and acoustic streaming. According to the bubble lifetime and whether they are fragmented into “daughter” bubbles, acoustic cavitation can be divided into transient cavitation and stable cavitation. Compared with the transient cavitation, the interaction between stable cavitation bubbles and solidifying alloys have been rarely investigated previously . In this work, the effect of stable cavitation on the dendritic growth of succinonitrile (SCN)-8.3% (mole fraction) water organic transparent alloy is systematically investigated by high-speed digital image technique and numerical simulation. It is found that when the bubble migration direction is consistent with that of dendritic growth, the periodic high pressure generated in bubble oscillation process increases the local undercooling, speeding up the dendrites growth effectively. Meanwhile, the concentrated stress inside dendrites induced by the linearly oscillation of cavitation bubble can break up dendrites into fragments. Specifically, if there exist stable cavitation bubbles suspended around the liquid-solid interface, periodically alternating flow field and high shear force in their surrounding liquid phase is produced. As a result, the nearby dendritic fragments will be attracted to those bubbles and then transformed into spherical grains.
      Corresponding author: Wang Jian-Yuan, wangjy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52088101, 51922089, 52130405, 51727803), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JCW-09), and the Key Industrial Chain Project of Shaanxi Provincial Key Research and Development Plan, China (Grant No. 2020ZDLGY13-03).
    [1]

    Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (2nd Ed.) (London: CRC Press) pp32–43

    [2]

    Hu Y J, Wang X, Wang J Y, Zhai W, Wei B 2021 Metall. Mater. Trans. A 52 3097Google Scholar

    [3]

    Feng X H, Zhao F Z, Jia H M, Zhou J X, Li Y D, Li W R, Yang Y S 2017 Int. J. Cast Metal. Res. 30 341Google Scholar

    [4]

    Yasui K 2018 Acoustic cavitation and bubble dynamics (Switzerland: Springer International) pp14, 15

    [5]

    Gielen B, Jordens J, Janssen J, Pfeiffer H, Wevers M, Thomassen L C J, Braeken L, Van Gerven T 2015 Ultrason. Sonochem. 25 31Google Scholar

    [6]

    吴文华, 翟薇, 胡海豹, 魏炳波 2017 物理学报 66 194303Google Scholar

    Wu W H, Zhai W, Hu H B, Wei B B 2017 Acta Phys. Sin. 66 194303Google Scholar

    [7]

    Koukouvinis P, Gavaises M, Supponen O, Farhat M 2016 Phys. Fluids 28 052103Google Scholar

    [8]

    Feng X H, Zhao F Z, Jia H M, Li Y J, Yang Y S 2018 Ultrason. Sonochem. 40 113Google Scholar

    [9]

    Chow R, Blindt R, Chivers R, Povey M 2005 Ultrasonics 43 227Google Scholar

    [10]

    Zhao Y, Zheng Q L, Liu Z W 2020 Mater. Lett. 274 128030Google Scholar

    [11]

    Shu D, Sun B D, Mi J W, Grant P S 2012 Metall. Mater. Trans. A 43 3755Google Scholar

    [12]

    Tan D Y, Mi J W 2013 Mater. Sci. Forum 765 230Google Scholar

    [13]

    Wang F, Eskin D, Mi J W, Wang C N, Koe B, King Andrew, Reinhard C, Connolley T 2017 Acta Mater. 141 142Google Scholar

    [14]

    Wang B, Tan D Y, Lee T L, Khong J C, Wang F, Eskin D, Connolley T, Fezzaa K, Mi J W 2018 Acta Mater. 144 505Google Scholar

    [15]

    Todaro C J, Easton M A, Qiu D, Zhang D, Bermingharm M J, Lui E W, Brandt M, Stjohn D H, Qian M 2020 Nat. Commun. 11 142Google Scholar

    [16]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [17]

    Omoteso K A, Roy-Layinde T O, Laoye J A, Vincent U E, McClintock P V E 2021 Ultrason. Sonochem. 70 105346Google Scholar

    [18]

    Lofstedt R, Barber B P, Putterman S J 1993 Phys. Fluids A 5 2911Google Scholar

    [19]

    Lin H, Storey B D, Szeri A J, Andrew J S 2002 J. Fluid Mech. 452 145Google Scholar

    [20]

    Murakami K, Yamakawa Y, Zhao J Y, Johnsen E, Ando K 2021 J. Fluid Mech. 924 A38Google Scholar

    [21]

    Wang S, Guo Z P, Zhang X P, Zhang A, Kang J W 2019 Ultrason. Sonochem. 51 160Google Scholar

    [22]

    Koss M B, LaCombe J C, Tennenhouse L A, Glicksman M E, Winsa E A 1999 Metall. Mater. Trans. A 30 3177Google Scholar

    [23]

    Shang S, Han Z Q 2019 J. Mater. Sci. 54 3111Google Scholar

    [24]

    Cattaneo C A, Evequoz O P E, Bertorello H R 1994 Scripta Metall. Mater. 31 461Google Scholar

    [25]

    Cain J B, Clunie J C, Baird J K 1995 Int. J. Thermophys. 16 1225Google Scholar

    [26]

    高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举 2007 物理学报 56 1188Google Scholar

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 56 1188Google Scholar

    [27]

    Trivedi R, Lipton J, Kurz W 1987 Acta Metall. 35 965Google Scholar

    [28]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957Google Scholar

    [29]

    Longuet-Higgins M S 1998 P. Roy. Soc. A-Math. Phy. 454 725Google Scholar

  • 图 1  SCN-H2O溶液的超声凝固观测实验以及数值模型示意图 (a) 单轴超声凝固原位观测装置示意图; (b) SCN-8.3%H2O溶液在SCN-H2O平衡相图中的位置, 图中S表示固态, L表示液态; (c) 气泡稳态振荡作用下枝晶内部应力分布的数值模型示意图

    Figure 1.  Schematic of experiment and numerical model: (a) In situ observation experiment setup of uniaxial ultrasonic solidification; (b) position of SCN-8.3% H2O solution in equilibrium phase diagram; (c) numerical model of stress distribution inside dendrite under a stable bubble oscillation. a stable bubble oscillation.

    图 2  稳态空化气泡作用下枝晶生长过程 (a) t = 0 s; (b) t = 1.02 s; (c) t = 2.96 s; (d) t = 5.94 s

    Figure 2.  In situ observation of dendritic growth under the action of stable cavitation: (a) t = 0 s; (b) t = 1.02 s; (c) t = 2.96 s; (d) t = 5.94 s.

    图 3  气泡稳态振荡过程中枝晶生长速率的变化规律 (a) 枝晶主干长度L随时间t的变化; (b) 一个振荡周期内过冷度随时间的变化; (c) LKT模型拟合的枝晶生长速率与过冷度的关系

    Figure 3.  Influence of dendritic growth velocity induced by a stable cavitation bubble: (a) Evolution of primary dendritic length with time; (b) variation of local undercooling in one oscillation period; (c) relationship between dendritic growth velocity and undercooling by LKT model.

    图 4  向固相内部迁移的气泡与枝晶生长的相互作用 (a) t = 0 s; (b) t = 0.24 s; (c) t = 0.82 s; (d) t = 5.04 s; (e) t = 7.42 s; (f) t = 11.26 s

    Figure 4.  Images of the interaction between the stable bubble migrating into solid phase and growing dendrites: (a) t = 0 s; (b) t = 0.24 s; (c) t = 0.82 s; (d) t = 5.04 s; (e) t = 7.42 s; (f) t = 11.26 s.

    图 5  空化气泡稳态振荡导致与其接触的二次枝晶臂根部弯曲、断裂的动态过程 (a) t = 0 ms; (b) t = 2.34 ms; (c) t = 4.68 ms; (d) t = 8.19 ms; (e) t = 9.36 ms; (f) t = 10.11 ms

    Figure 5.  Continuous bending until fragmentation of the secondary dendritic arm induced by the stable oscillation bubble: (a) t = 0 ms; (b) t = 2.34 ms; (c) t = 4.68 ms; (d) t = 8.19 ms; (e) t = 9.36 ms; (f) t = 10.11 ms.

    图 6  稳态空化气泡对枝晶臂弯曲角度及内部应力-应变影响 (a) 二次枝晶臂弯曲角度随时间的变化规律; (b) 一个周期内初始半径为35 μm的气泡振荡过程中半径及压强随时间的变化; (c) 二次枝晶臂内部不同位置的应力分布

    Figure 6.  Effect of a stable oscillation bubble on stress-strain distribution inside the secondary dendritic arm: (a) Bending angle of the secondary dendritic arm changing over time; (b) radius and pressure calculated by Rayleigh-Plesset equation in one period with an initial bubble radius of 35 μm; (c) stress distribution at different positions inside the secondary dendritic arm.

    图 7  液-固界面处的游离碎片被邻近的稳态空化气泡吸引并形成球状晶的演化过程, 其中(a) t = 0 s, (b) t = 2.42 s, (c) t = 5.20 s, (d) t = 6.08 s, (e) t = 8.40 s; (f) 气泡振荡过程中半径及吸附层厚度随时间的变化规律

    Figure 7.  Evolution process of the free fragments attracted by a neighboring stable bubble at liquid-solid interface with a transformation into spherical grains: (a)–(e) Images of real-time observation at t = (a) 0 s, (b) 2.42 s, (c) 5.20 s, (d) 6.08 s, (e) 8.40 s. (f) The bubble radius and adsorbed layer thickness over time.

    图 8  气泡稳态振荡吸引枝晶碎片并形成球状晶的原理 (a) 超声波作用下气泡的稳态振荡过程; (b) 枝晶碎片被气泡吸引并形成球状晶的示意图

    Figure 8.  Principle of dendritic fragments attracted to a stable cavitation bubble with transformation into spherical grains: (a) Linearly oscillation of a steady-state bubble under the ultrasonic wave; (b) dendritic fragments attracted to a bubble and transformed into spherical grains.

    表 1  数值模拟中用到的物理量数值

    Table 1.  Values of parameters in numerical simulation.

    物理量数值单位
    气泡初始半径 R045μm
    液体介质密度 ρ0970 [21]kg/m3
    饱和蒸汽压 Pv2330 [20]Pa
    表面张力 σ3.85×10–2 [21]N/m
    液体介质黏度 μ2.66×10–3 [21]Pa·s
    液体介质静压力 P01.013×105 [20]Pa
    声压幅值 Pa6.59×104Pa
    超声频率 f20kHz
    气体比热系数 γ1.4 [20]/
    液体介质声速 c01500 [4]m/s
    液体介质熔点 TL316K
    凝固潜热 ∆Hf3700 [23]J/mol
    体积变化 ∆V2.23×10–6 [22]m3/mol
    熔化熵 ∆S11.67 [23]J/(m–3·K–1)
    液相比热容 Cp188.1 [22]J/(mol–1·K–1)
    热扩散系数 DT1.134×10–7 [22]m2/s
    平衡液相线斜率 m1.42K/at.%
    溶质浓度 C08.3at.%
    溶质分配系数 ke0.65 [24]/
    溶质扩散系数 DL8.33×10–10 [25]m2/s
    液-固界面能 σSL8.94×10–3 [22]J/m2
    Gibbs-Thomson系数 Γ6×10–8m·K
    DownLoad: CSV
  • [1]

    Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (2nd Ed.) (London: CRC Press) pp32–43

    [2]

    Hu Y J, Wang X, Wang J Y, Zhai W, Wei B 2021 Metall. Mater. Trans. A 52 3097Google Scholar

    [3]

    Feng X H, Zhao F Z, Jia H M, Zhou J X, Li Y D, Li W R, Yang Y S 2017 Int. J. Cast Metal. Res. 30 341Google Scholar

    [4]

    Yasui K 2018 Acoustic cavitation and bubble dynamics (Switzerland: Springer International) pp14, 15

    [5]

    Gielen B, Jordens J, Janssen J, Pfeiffer H, Wevers M, Thomassen L C J, Braeken L, Van Gerven T 2015 Ultrason. Sonochem. 25 31Google Scholar

    [6]

    吴文华, 翟薇, 胡海豹, 魏炳波 2017 物理学报 66 194303Google Scholar

    Wu W H, Zhai W, Hu H B, Wei B B 2017 Acta Phys. Sin. 66 194303Google Scholar

    [7]

    Koukouvinis P, Gavaises M, Supponen O, Farhat M 2016 Phys. Fluids 28 052103Google Scholar

    [8]

    Feng X H, Zhao F Z, Jia H M, Li Y J, Yang Y S 2018 Ultrason. Sonochem. 40 113Google Scholar

    [9]

    Chow R, Blindt R, Chivers R, Povey M 2005 Ultrasonics 43 227Google Scholar

    [10]

    Zhao Y, Zheng Q L, Liu Z W 2020 Mater. Lett. 274 128030Google Scholar

    [11]

    Shu D, Sun B D, Mi J W, Grant P S 2012 Metall. Mater. Trans. A 43 3755Google Scholar

    [12]

    Tan D Y, Mi J W 2013 Mater. Sci. Forum 765 230Google Scholar

    [13]

    Wang F, Eskin D, Mi J W, Wang C N, Koe B, King Andrew, Reinhard C, Connolley T 2017 Acta Mater. 141 142Google Scholar

    [14]

    Wang B, Tan D Y, Lee T L, Khong J C, Wang F, Eskin D, Connolley T, Fezzaa K, Mi J W 2018 Acta Mater. 144 505Google Scholar

    [15]

    Todaro C J, Easton M A, Qiu D, Zhang D, Bermingharm M J, Lui E W, Brandt M, Stjohn D H, Qian M 2020 Nat. Commun. 11 142Google Scholar

    [16]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [17]

    Omoteso K A, Roy-Layinde T O, Laoye J A, Vincent U E, McClintock P V E 2021 Ultrason. Sonochem. 70 105346Google Scholar

    [18]

    Lofstedt R, Barber B P, Putterman S J 1993 Phys. Fluids A 5 2911Google Scholar

    [19]

    Lin H, Storey B D, Szeri A J, Andrew J S 2002 J. Fluid Mech. 452 145Google Scholar

    [20]

    Murakami K, Yamakawa Y, Zhao J Y, Johnsen E, Ando K 2021 J. Fluid Mech. 924 A38Google Scholar

    [21]

    Wang S, Guo Z P, Zhang X P, Zhang A, Kang J W 2019 Ultrason. Sonochem. 51 160Google Scholar

    [22]

    Koss M B, LaCombe J C, Tennenhouse L A, Glicksman M E, Winsa E A 1999 Metall. Mater. Trans. A 30 3177Google Scholar

    [23]

    Shang S, Han Z Q 2019 J. Mater. Sci. 54 3111Google Scholar

    [24]

    Cattaneo C A, Evequoz O P E, Bertorello H R 1994 Scripta Metall. Mater. 31 461Google Scholar

    [25]

    Cain J B, Clunie J C, Baird J K 1995 Int. J. Thermophys. 16 1225Google Scholar

    [26]

    高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举 2007 物理学报 56 1188Google Scholar

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 56 1188Google Scholar

    [27]

    Trivedi R, Lipton J, Kurz W 1987 Acta Metall. 35 965Google Scholar

    [28]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957Google Scholar

    [29]

    Longuet-Higgins M S 1998 P. Roy. Soc. A-Math. Phy. 454 725Google Scholar

  • [1] Zhang Xin-Yi, Wu Wen-Hua, Wang Jian-Yuan, Zhang Ying, Zhai Wei, Wei Bing-Bo. Motion law of cavitation bubbles in ultrasonic field and mechanism of their interaction with dendrites. Acta Physica Sinica, 2024, 73(18): 184301. doi: 10.7498/aps.73.20240721
    [2] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] Li Lu-Yuan, Ruan Ying, Wei Bing-Bo. Rapid dendrite growth mechanism and solute distribution in liquid ternary Fe-Cr-Ni alloys. Acta Physica Sinica, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [4] Sha Sha, Wang Wei-Li, Wu Yu-Hao, Wei Bing-Bo. Dendrite growth and Vickers microhardness of Co7Mo6 intermetallic compound under large undercooling condition. Acta Physica Sinica, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [5] Wei Shao-Lou, Huang Lu-Jun, Chang Jian, Yang Shang-Jing, Geng Lin. Substantial undercooling and rapid dendrite growth of liquid Ti-Al alloy. Acta Physica Sinica, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [6] Duan Pei-Pei, Xing Hui, Chen Zhi, Hao Guan-Hua, Wang Bi-Han, Jin Ke-Xin. Phase-field modeling of free dendritic growth of magnesium based alloy. Acta Physica Sinica, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [7] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth. Acta Physica Sinica, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [8] Pan Shi-Yan, Zhu Ming-Fang. Quantitative phase-field model for dendritic growth with two-sided diffusion. Acta Physica Sinica, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [9] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [10] Zhu Chang-Sheng, Wang Jun-Wei, Wang Zhi-Ping, Feng Li. Denedritic growth in forced flow using the phase-field simulation. Acta Physica Sinica, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [11] Wang Jian-Yuan, Chen Chang-Le, Zhai Wei, Jin Ke-Xin. Directional dendrite growth of SCN-3wt% H2O under shear flow. Acta Physica Sinica, 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [12] Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man, Cai Qi-Zhou, Chen Li-Liang. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [13] Sun Dong-Ke, Zhu Ming-Fang, Yang Chao-Rong, Pan Shi-Yan, Dai Ting. Modelling of dendritic growth in forced and natural convections. Acta Physica Sinica, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [14] Zhu Chang-Sheng, Feng Li, Wang Zhi-Ping, Xiao Rong-Zhen. Numerical simulation of three-dimensional dendritic growth using phase-field method. Acta Physica Sinica, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [15] Gao Xue-Peng, Li Xin-Tao, Qie Xi-Wang, Wu Ya-Ping, Li Xi-Meng, Li Ting-Ju. Effect of high-intensity ultrasound on restraining solute segregation in Al-Si alloy casting process. Acta Physica Sinica, 2007, 56(2): 1188-1194. doi: 10.7498/aps.56.1188
    [16] Zang Du-Yang, Wang Hai-Peng, Wei Bing-Bo. Rapid dendritic growth in highly undercooled ternary Ni-Cu-Co alloy. Acta Physica Sinica, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [17] Long Wen-Yuan, Cai Qi-Zhou, Wei Bo-Kang, Chen Li-Liang. Simulation of dendritic growth of multicomponent alloys using phase-field method. Acta Physica Sinica, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [18] Yang Hong, Zhang Qing-Guang, Chen Min. A phase-field simulation on the influence of thermal fluctuation on secondary branch growth in undercooled melt. Acta Physica Sinica, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [19] Li Qiang, Li Dian-Zhong, Qian Bai-Nian. Modeling of dendritic growth by means of cellular automaton method. Acta Physica Sinica, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [20] YU YAN-MEI, YANG GEN-CANG, ZHAO DA-WEN, Lü YI-LI, A. KARMA, C. BECKERMANN. NUMERICAL SIMULATION OF DENDRITIC GROWTH IN UNDERCOOLED MELT USING PHASE-FIELD APPROACH. Acta Physica Sinica, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
Metrics
  • Abstract views:  4827
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2022
  • Accepted Date:  28 August 2022
  • Available Online:  12 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回