Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Negative magnetic efficiency induced by Dexter energy transfer in coexistence system of exciplex and electroplex

Wu Yu-Ting Zhu Hong-Qiang Wei Fu-Xian Wang Hui-Yao Chen Jing Ning Ya-Ru Wu Feng-Jiao Chen Xiao-Li Xiong Zu-Hong

Citation:

Negative magnetic efficiency induced by Dexter energy transfer in coexistence system of exciplex and electroplex

Wu Yu-Ting, Zhu Hong-Qiang, Wei Fu-Xian, Wang Hui-Yao, Chen Jing, Ning Ya-Ru, Wu Feng-Jiao, Chen Xiao-Li, Xiong Zu-Hong
PDF
HTML
Get Citation
  • Exciplex-type organic light-emitting diodes (OLEDs) are research focus at present, because of their high-efficiency luminescence at low cost due to the reverse intersystem crossing (RISC, EX1 ← EX3). Their microscopic processes usually exhibit intersystem crossing (ISC, PP1 → PP3) process dominated by polar pairs, leading the magneto-electroluminescence [MEL, MEL = (ΔEL)/EL × 100%] effect values and the magneto-conductance [MC, MC = (ΔI)/I × 100%] effect values to be both positive, the amplitude of MEL to be greater than that of MC at the same current, and the corresponding magnetic efficiency [Mη, Mη = (Δη)/η × 100%] values to be also positive due to the linear relationship EL $ \propto \eta\cdot I $ within general current (I) range. Surprisingly, although the MEL value of the device coexisting with exciplex and electroplex is also greater than the MC value at low current, MEL value is less than MC value at high current. In other words, Mη value of this device undergoes a conversion from positive to negative with current increasing. In this work, to find out the reason why Mη value of exciplex-type OLED formed by TAPC and TPBi shows a negative value under high current and also to study the micro-dynamic evolution mechanism of spin-pair states in this device, three OLEDs are fabricated and their luminescence spectra and organic magnetic field effect curves are measured. The results indicate that the electroplex is produced in the exciplex-type OLED formed by TAPC and TPBi. Since the triplet exciton energy of monomers TAPC and TPBi is higher than those of triplet charge-transfer states of exciplex (CT${}_3^{\rm{ex}} $), and the CT${}_3^{\rm{ex}} $ energy is greater than the energy of triplet charge-transfer states of electroplex (CT${}_3^{\rm{el}} $), the CT${}_3^{\rm{ex}} $ energy can only be transferred to CT${}_3^{\rm{el}} $ through Dexter energy transfer (DET) process without other loss channels. The electroluminescence (EL) spectrum of this device shows that the luminescence intensity of exciplex is greater than that of electroplex, which indicates that the quantity of exciplex is more than that of electroplex. Besides, EL spectra at different currents prove that the formation rate of exciplex is faster than that of electroplex with current increasing. Owing to less quantity of exciplex at low current, the DET process from CT${}_3^{\rm{ex}} $ to CT${}_3^{\rm{el}} $ is too weak to facilitate the RISC process of charge-transfer states of electroplex (CTel). Therefore, the low field amplitude of Mη curve is positive at low current. The number of spin-pair states of exciplex increases with current increasing, which enhances the DET process. These processes of direct charge carriers trapped and energy transferred critically increase the number of CT${}_3^{\rm{el}} $ at high current, which greatly strengthens the RISC process of CTel. Therefore, the low field amplitude of Mη curve changes from positive to negative with current increasing. Furthermore, the Mη curves of this device are measured when only exciplex exists and only electroplex exists in the employing filter, respectively. As expected, the results confirm the accuracy of the mechanism of the negative value of the total Mη for this device. Obviously, this work contributes to the comprehension of the internal micro-physical mechanism in OLEDs and the law of interactions between excited states.
      Corresponding author: Zhu Hong-Qiang, 20132013@cqnu.edu.cn ; Xiong Zu-Hong, zhxiong@swu.edu.cn
    • Funds: Project supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202200569), the National Natural Science Foundation of China (Grant Nos. 12104076, 11874305), the Chongqing Natural Science Foundation project (Grant No. cstc2019jcyj-msxmX0560) and the University-level Foundation of Chongqing Normal University (Grant No. 21XLB050).
    [1]

    Godlewski J, Obarowska M 2007 Eur. Phys. J. -Spec. Top. 144 51Google Scholar

    [2]

    Pan Y Y, Li W J, Zhang S T, Yao L, Gu C, Xu H, Yang B, Ma Y G 2014 Adv. Opt. Mater. 2 510Google Scholar

    [3]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [4]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [5]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [6]

    Kalinowski J, Cocchi M, Virgili D, Marco P D, Fattori V 2003 Chem. Phys. Lett. 380 710Google Scholar

    [7]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [8]

    Zhang L Cheah K W 2018 Sci. Rep. 8 8832Google Scholar

    [9]

    Bera K, Douglas C J, Frontiera R R 2017 J. Phys. Chem. Lett. 8 5929Google Scholar

    [10]

    赵茜, 汤仙童, 潘睿亨, 许静, 屈芬兰, 熊祖洪 2019 科学通报 64 2514Google Scholar

    Zhao X, Tang X T, Pan R H, Xu J, Qu F L, Xiong Z H 2019 Chin. Sci. Bull. 64 2514Google Scholar

    [11]

    Doubleday C, Turro N J, Wang J F 1989 Acc. Chem. Res. 22 199Google Scholar

    [12]

    张勇, 刘亚莉, 焦威, 陈林, 熊祖洪 2012 物理学报 61 117106Google Scholar

    Zhang Y, Liu Y L, Jiao W, Chen L, Xiong Z H 2012 Acta Phys. Sin. 61 117106Google Scholar

    [13]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

    [14]

    Xiang J, Chen Y B, Yuan D, Jia W Y, Zhang Q M, Xiong Z H 2016 Appl. Phys. Lett. 109 103301Google Scholar

    [15]

    Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307Google Scholar

    [16]

    Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305Google Scholar

    [17]

    Wang Y F, Sahin-Tiras K, Harmon H J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011Google Scholar

    [18]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [19]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [20]

    Gruenbaum W T, Sorriero L J, Borsenberger P M, Zumbulyadis N 1996 Jpn. J. Appl. Phys. 35 2714Google Scholar

    [21]

    雷俊峰, 郝玉英, 樊文浩, 房晓红, 许并社 2009 发光学报 30 590

    Lei J F, Hao Y Y, Fan W H, Fang X H, Xu B S 2009 Chin. J. Lumin. 30 590

    [22]

    Wei M Y, Gui G, Chung Y H, Xiao L X, Qu B, Chen Z J 2015 Phys. Status Solidi B 252 1711Google Scholar

    [23]

    Deng J Q, Jia W Y, Chen Y B, Liu D Y, Hu Y Q, Xiong Z H 2017 Sci. Rep. 7 44396Google Scholar

    [24]

    Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar

    [25]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [26]

    Scharff T, Ratzke W, Zipfel J, Klemm P, Bange S, Lupton J M 2021 Nat. Commun. 12 2071Google Scholar

    [27]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [28]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [29]

    Liu W, Chen J X, Zheng C J, Wang K, Chen D Y, Li F, Dong Y P, Lee C S, Ou X M, Zhang X H 2016 Adv. Funct. Mater. 26 2002Google Scholar

    [30]

    Zhang M, Liu W, Zheng C J, Wang K, Shi Y Z, Li X, Lin H, Tao S L, Zhang X H 2019 Adv. Sci. 6 1801938Google Scholar

    [31]

    Chen P, Peng Q M, Yao L, Gao N, Li F 2013 Appl. Phys. Lett. 102 063301Google Scholar

    [32]

    Sasabe H, Tanaka D, Yokoyama D, Chiba T, Pu Y J, Nakayama K, Yokoyama M, Kido J 2011 Adv. Funct. Mater. 21 336Google Scholar

    [33]

    Liu X K, Chen Z, Zheng C J, Liu C L, Lee C S, Li F, Ou X M, Zhang X H 2015 Adv. Mater. 27 2378Google Scholar

    [34]

    Hu B, Wu Y 2007 Nat. Mater. 6 985Google Scholar

    [35]

    Bagnich S A, Niedermeier U, Melzer C, Sarfert W, von Seggern H 2009 J. Appl. Phys. 106 113702Google Scholar

    [36]

    Fan Y X, Sun A H, Tian Y H, Zhou P C, Niu Y X, Shi Wei, Wei B 2022 J. Phys. D: Appl. Phys. 55 315103Google Scholar

    [37]

    Xu Z, Gong Y B, Dai Y F, Sun Q, Qiao X F, Yang D Z, Zhan X J, Li Z, Tang B Z, Ma D G 2019 Adv. Opt. Mater. 7 1801539Google Scholar

    [38]

    Wu Z B, Wang Q, Yu L, Chen J S, Qiao X F, Ahamad T, Alshehri S M, Yang C L, Ma D G 2016 ACS Appl. Mater. Interfaces 8 28780Google Scholar

    [39]

    Mondal A, Paterson L, Cho J, et al. 2021 Chem. Phys. Rev. 2 031304Google Scholar

  • 图 1  能级结构和光谱 (a), (d) 器件1; (b), (e) 器件2; (c), (f) 器件3

    Figure 1.  Energy level structures and luminance intensity: (a), (d) Device 1; (b), (e) device 2; (c), (f) device 3.

    图 2  (a)—(c) 室温下不同电流时器件1的MC, MEL和Mη曲线; (d) 它们的低场幅值随电流的变化规律; (e) 器件1的微观机理图

    Figure 2.  (a)–(c) The current-dependent MC, MEL and Mη curves of device 1 at room temperature; (d) their low magnetic field values as a function of current; (e) microscopic mechanisms in device 1.

    图 3  (a)—(c) 器件2和(d)—(f) 器件3室温下不同电流时的MC, MEL和Mη曲线

    Figure 3.  The current-dependent MC, MEL and Mη curves of device 2 (a)–(c) and device 3 (d)–(f) at room temperature.

    图 4  (a)器件2和(b)器件3的微观机理图

    Figure 4.  Microscopic mechanisms in device 2 (a) and device 3 (b).

    图 5  (a)器件2和(b)器件3在室温下不同电流时的归一化EL谱; 器件3中(c)激基复合物和(d)电致激基复合物的Mη曲线

    Figure 5.  The normalized current-dependent EL spectra of device 2 (a) and device 3 (b) at room temperature; Mη curves of exciplex (c) and electroplex (d) for device 3.

  • [1]

    Godlewski J, Obarowska M 2007 Eur. Phys. J. -Spec. Top. 144 51Google Scholar

    [2]

    Pan Y Y, Li W J, Zhang S T, Yao L, Gu C, Xu H, Yang B, Ma Y G 2014 Adv. Opt. Mater. 2 510Google Scholar

    [3]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [4]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [5]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [6]

    Kalinowski J, Cocchi M, Virgili D, Marco P D, Fattori V 2003 Chem. Phys. Lett. 380 710Google Scholar

    [7]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [8]

    Zhang L Cheah K W 2018 Sci. Rep. 8 8832Google Scholar

    [9]

    Bera K, Douglas C J, Frontiera R R 2017 J. Phys. Chem. Lett. 8 5929Google Scholar

    [10]

    赵茜, 汤仙童, 潘睿亨, 许静, 屈芬兰, 熊祖洪 2019 科学通报 64 2514Google Scholar

    Zhao X, Tang X T, Pan R H, Xu J, Qu F L, Xiong Z H 2019 Chin. Sci. Bull. 64 2514Google Scholar

    [11]

    Doubleday C, Turro N J, Wang J F 1989 Acc. Chem. Res. 22 199Google Scholar

    [12]

    张勇, 刘亚莉, 焦威, 陈林, 熊祖洪 2012 物理学报 61 117106Google Scholar

    Zhang Y, Liu Y L, Jiao W, Chen L, Xiong Z H 2012 Acta Phys. Sin. 61 117106Google Scholar

    [13]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

    [14]

    Xiang J, Chen Y B, Yuan D, Jia W Y, Zhang Q M, Xiong Z H 2016 Appl. Phys. Lett. 109 103301Google Scholar

    [15]

    Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307Google Scholar

    [16]

    Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305Google Scholar

    [17]

    Wang Y F, Sahin-Tiras K, Harmon H J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011Google Scholar

    [18]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [19]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [20]

    Gruenbaum W T, Sorriero L J, Borsenberger P M, Zumbulyadis N 1996 Jpn. J. Appl. Phys. 35 2714Google Scholar

    [21]

    雷俊峰, 郝玉英, 樊文浩, 房晓红, 许并社 2009 发光学报 30 590

    Lei J F, Hao Y Y, Fan W H, Fang X H, Xu B S 2009 Chin. J. Lumin. 30 590

    [22]

    Wei M Y, Gui G, Chung Y H, Xiao L X, Qu B, Chen Z J 2015 Phys. Status Solidi B 252 1711Google Scholar

    [23]

    Deng J Q, Jia W Y, Chen Y B, Liu D Y, Hu Y Q, Xiong Z H 2017 Sci. Rep. 7 44396Google Scholar

    [24]

    Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar

    [25]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [26]

    Scharff T, Ratzke W, Zipfel J, Klemm P, Bange S, Lupton J M 2021 Nat. Commun. 12 2071Google Scholar

    [27]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [28]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [29]

    Liu W, Chen J X, Zheng C J, Wang K, Chen D Y, Li F, Dong Y P, Lee C S, Ou X M, Zhang X H 2016 Adv. Funct. Mater. 26 2002Google Scholar

    [30]

    Zhang M, Liu W, Zheng C J, Wang K, Shi Y Z, Li X, Lin H, Tao S L, Zhang X H 2019 Adv. Sci. 6 1801938Google Scholar

    [31]

    Chen P, Peng Q M, Yao L, Gao N, Li F 2013 Appl. Phys. Lett. 102 063301Google Scholar

    [32]

    Sasabe H, Tanaka D, Yokoyama D, Chiba T, Pu Y J, Nakayama K, Yokoyama M, Kido J 2011 Adv. Funct. Mater. 21 336Google Scholar

    [33]

    Liu X K, Chen Z, Zheng C J, Liu C L, Lee C S, Li F, Ou X M, Zhang X H 2015 Adv. Mater. 27 2378Google Scholar

    [34]

    Hu B, Wu Y 2007 Nat. Mater. 6 985Google Scholar

    [35]

    Bagnich S A, Niedermeier U, Melzer C, Sarfert W, von Seggern H 2009 J. Appl. Phys. 106 113702Google Scholar

    [36]

    Fan Y X, Sun A H, Tian Y H, Zhou P C, Niu Y X, Shi Wei, Wei B 2022 J. Phys. D: Appl. Phys. 55 315103Google Scholar

    [37]

    Xu Z, Gong Y B, Dai Y F, Sun Q, Qiao X F, Yang D Z, Zhan X J, Li Z, Tang B Z, Ma D G 2019 Adv. Opt. Mater. 7 1801539Google Scholar

    [38]

    Wu Z B, Wang Q, Yu L, Chen J S, Qiao X F, Ahamad T, Alshehri S M, Yang C L, Ma D G 2016 ACS Appl. Mater. Interfaces 8 28780Google Scholar

    [39]

    Mondal A, Paterson L, Cho J, et al. 2021 Chem. Phys. Rev. 2 031304Google Scholar

  • [1] Wang Hui-Yao, Wei Fu-Xian, Wu Yu-Ting, Peng Teng, Liu Jun-Hong, Wang Bo, Xiong Zu-Hong. Enhanced reverse inter-system crossing process of charge-transfer stated induced by carrier balance in exciplex-type OLEDs. Acta Physica Sinica, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [2] Zhao Xi, Chen Jing, Peng Teng, Liu Jun-Hong, Wang Bo, Chen Xiao-Li, Xiong Zu-Hong. Non-monotonic current dependence of intersystem crossing and reverse intersystem crossing processes in exciplex-based organic light-emitting diodes. Acta Physica Sinica, 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [3] Wei Fu-Xian, Liu Jun-Hong, Peng Teng, Wang Bo, Zhu Hong-Qiang, Chen Xiao-Li, Xiong Zu-Hong. Detection of Dexter energy transfer process in interface-type OLED via utilizing the characteristic magneto-electroluminescence response of hot exciton reverse intersystem crossing. Acta Physica Sinica, 2023, 72(18): 187201. doi: 10.7498/aps.72.20230998
    [4] Wang Hui-Yao, Ning Ya-Ru, Wu Feng-Jiao, Zhao Xi, Chen Jing, Zhu Hong-Qiang, Wei Fu-Xian, Wu Yu-Ting, Xiong Zu-Hong. Reasons for “disappearance” phenomenon of both intersystem crossing of polaron-pair states and reverse intersystem crossing of high-lying triplet excitons in pure Rubrene-based OLEDs. Acta Physica Sinica, 2022, 71(21): 217201. doi: 10.7498/aps.71.20221060
    [5] Ning Ya-Ru, Zhao Xi, Tang Xian-Tong, Chen Jing, Wu Feng-Jiao, Jia Wei-Yao, Chen Xiao-Li, Xiong Zu-Hong. Investigations of microscopic mechanisms in exciplex-based devices with isomers of mCBP and CBP as donors via magneto-electroluminescence. Acta Physica Sinica, 2022, 71(8): 087201. doi: 10.7498/aps.71.20212068
    [6] Zhao Dan, Wang Shuai-Hu, Liu Shao-Gang, Cui Jin, Dong Li-Qiang. Vibration transfer characteristic of gradient-like structure based on magnetorheological fluid. Acta Physica Sinica, 2020, 69(9): 098301. doi: 10.7498/aps.69.20200326
    [7] Yan Ming-Yue, Zhang Xu, Liu Chen-Hao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Energy conversion efficiency of feedback pulsing ratchet. Acta Physica Sinica, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [8] Wang Qian, Zhao Jiang-Shan, Luo Shi-Wen, Zuo Du-Luo, Zhou Yi. Energy efficiency analysis of ArF excimer laser system. Acta Physica Sinica, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [9] Shen Ying-Long, Tang Chun-Mei, Sheng Qiu-Chun, Liu Shuang, Li Wen-Tao, Wang Long-Fei, Chen Dan-Ping. Spectroscopic properties and energy transfer of Ce3+/Eu2+ codoped oxide glasses with high Gd2O3 concentration. Acta Physica Sinica, 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [10] Wang Hua, Xu Bing-She, Meng Wei-Xin, Hao Yu-Ying, Liu Xu-Guang, Xu Hui-Xia. Properties of white organic electroluminescent devices based on a new organic metal complex with quantum well structure. Acta Physica Sinica, 2011, 60(9): 098102. doi: 10.7498/aps.60.098102
    [11] Gao Jian-Sen, Zhang Ning. Electric field-controlled permeability and impedance in a heterotypic composite of ferroelectrics/magnet with high permeability. Acta Physica Sinica, 2009, 58(12): 8607-8611. doi: 10.7498/aps.58.8607
    [12] Bian Lei-Xiang, Wen Yu-Mei, Li Ping. Analysis of magneto-mechano-electronic coupling factors in magnetostrictive/piezoelectric laminated composite. Acta Physica Sinica, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [13] Gao Kun, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Effect of interchain coupling on the inversed polarization of a biexciton in conjugated polymers. Acta Physica Sinica, 2005, 54(2): 665-668. doi: 10.7498/aps.54.665
    [14] LI HONG-JIAN, PENG JING-CUI, XU XIE-MEI, QU SHU, XIA HUI. THE EFFICIENCY OF THE FORMATION AND FISSION OF POLARON-EXCITONS IN POLYMER LIGHT-EMITTING DEVICES. Acta Physica Sinica, 2001, 50(11): 2247-2251. doi: 10.7498/aps.50.2247
    [15] LIU ZHEN-WEI, YANG XIAO-LIANG, XIAO SI-GUO. THE EXPERIMENTAL STUDY OF IMPROVING RARE-EARTHDOPED MATERIALS'S ENERGY UP-CONVERSIONEFFICIENCY. Acta Physica Sinica, 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [16] CHEN XIAO-BO, N.Sawanobori, NIE YU-XIN. INITIAL STUDY ABOUT CROSS-ENERGY-TRANSFER AND FLUORESCENCE GUARD-AGAINST-FORGE IN OXYFLUORIDE VITROCERAMICS. Acta Physica Sinica, 2000, 49(12): 2488-2493. doi: 10.7498/aps.49.2488
    [17] CHEN BAO-JIU, QIN WEI-PING, WANG HAI-YU, XU WU, HUANG SHI-HUA. COMPUTER SIMULATION OF ENERGY TRANFER PROCESS. Acta Physica Sinica, 1999, 48(3): 545-549. doi: 10.7498/aps.48.545
    [18] ZHU LI, BAO SHI-NING, XU YA-BO, XU CHUN-YI. FORMATION OF K-O COMPLEXES IN COADSORPTION OF CO AND K ON Cu(lll) SURFACE. Acta Physica Sinica, 1992, 41(8): 1385-1388. doi: 10.7498/aps.41.1385
    [19] GUO HOI-QUN, ZHAO JIAN-GAO, WANG ZHEN-XI, XIE KAN, SHEN BAO-GEN. THE GIANT MAGNETOSTRICTION OF (Tb,Dy)Fe2 ALLOYS. Acta Physica Sinica, 1979, 28(1): 121-124. doi: 10.7498/aps.28.121
    [20] ОПРЕДЕЛЕНИЕ ВЫХОДА СВЕЧЕНИЯ ПРИ РЕКОМБИНАЦИИ. Acta Physica Sinica, 1961, 17(1): 18-22. doi: 10.7498/aps.17.18
Metrics
  • Abstract views:  3288
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2022
  • Accepted Date:  02 August 2022
  • Available Online:  07 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回