Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of stress induced irreversible magnetic anisotropy in Fe-based alloy ribbons

Zhang Jian-Qiang Qin Yan-Jun Fang Zheng Fan Xiao-Zhen Yang Hui-Ya Kuang Fu-Li Zhai Yao Miao Yan-Long Zhao Zi-Xiang He Jia-Jun Ye Hui-Qun Fang Yun-Zhang

Citation:

Mechanism of stress induced irreversible magnetic anisotropy in Fe-based alloy ribbons

Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Miao Yan-Long, Zhao Zi-Xiang, He Jia-Jun, Ye Hui-Qun, Fang Yun-Zhang
PDF
HTML
Get Citation
  • Fe-based amorphous and nanocrystalline soft magnetic alloys are regarded as the significant dual-green energy-saving materials because of their superior magnetic properties and straightforward fabrication procedure. As such, they have attracted much attention in the fields of the electronic information and electrical power. In this work, Fe73.5Cu1Nb3Si13.5B9 (%) amorphous alloy ribbon is subjected to various physical ageing treatments in nitrogen atmosphere. These treatments include annealing at 540 ℃ for 30 min under different tensile stresses and isothermal tempering without tensile stress for several cycles. The origin of stress-induced magnetic anisotropy is investigated through using dynamic strain analysis, the longitudinally driven giant magento-impedance effect, and synchrotron radiation X-ray diffraction. In the process of tensile stress annealing, it is found that the axial strain of ribbon is elastic strain when annealing temperature is below the glass transition point, and plastic strain when annealing temperature is above the glass transition point; the precipitation of nanocrystalline phase has a pinning effect on amorphous matrix, which slows down the strain rates and makes the tend stable. Additionally, isothermal tempering studies show that the stress-induced magnetic anisotropy and lattice plane anisotropy have different relaxation patterns. It is found through numerical fitting that the stress-induced magnetic anisotropy can reach a stable value of 0.144 by infinite tempering, whereas the lattice plane anisotropy can only relax to zero by finite tempering. A model of nanocrystalline grain distribution anisotropy is developed to re-examine the origin of stress-induced magnetic anisotropy. It supports a viewpoint that the nanocrystalline grain distribution anisotropy $\Delta \delta $ is responsible for the stress-induced irreversible magnetic anisotropy ${K_{\text{d}}}$, and that their relationship can be described as a following function: ${K_{\text{d}}} = k\Delta \delta $. Therefore, it is proposed that the stress-induced anisotropy originates from a synergistic interaction between the lattice plane anisotropy and the nanocrystalline grain distribution anisotropy in Fe-based alloy ribbon. This work has important implications for understanding the mechanism of the stress-induced magnetic anisotropy.
      Corresponding author: Zhang Jian-Qiang, zhjian8386@163.com ; Fang Yun-Zhang, fyz@zjnu.cn
    • Funds: Project supported by the Key Specialized Research and Development Program of Xinjiang Uygur Autonomous Region, China (Grant No. KYZ04Y21100), the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 12064037), the Planning Program on Science and Technology of Gansu Province, China (Grant No. 21JR1RE288) , the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2021D01B47), and the High level Pre-research program of Tianshui Normal University, China (Grant No. GJB2021-09).
    [1]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [2]

    Li Y M, Jia X J, Zhang W, Zhang Y, Xie G Q, Qiu Z Y, Luan J H, Jiao Z B 2021 J. Mater. Sci. Technol. 65 171Google Scholar

    [3]

    Corte-Leon P, Zhukova V, Blanco J M, González-Legarreta L, Ipatov M, Zhukov A 2020 J. Magn. Magn. Mater. 510 166939Google Scholar

    [4]

    Sai Ram B, Paul A K, Kulkarni S V 2021 J. Magn. Magn. Mater. 537 16820

    [5]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [6]

    马海健, 魏文庆, 鲍文科, 神祥博, 王长春, 王伟民 2020 稀有金属材料与工程 49 2904

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare Metal Mat. Eng. 49 2904

    [7]

    Liu T, Wang A D, Zhao C L, Yue S Q, Wang X M, Liu C T 2019 Mater. Res. Bull. 112 323Google Scholar

    [8]

    Lukshina V A, Dmitrieva N V, Cerdeira M A, Potapov A P 2012 J. Alloys Compd. 536 374Google Scholar

    [9]

    Correa A M, Bohn F 2018 J. Magn. Magn. Mater. 453 30Google Scholar

    [10]

    Varga L K 2020 J. Magn. Magn. Mater. 500 166327Google Scholar

    [11]

    Fang Y Z, Zheng J J, Wu F M, Xu Q M, Zhang J Q, Ye H Q, Zheng J L, Li T Y 2010 Appl. Phys. Lett. 96 092508Google Scholar

    [12]

    Néel L 1954 J. Phys. 4 225

    [13]

    Hofmann B, Kronmüller H 1996 J. Magn. Magn. Mater. 152 91Google Scholar

    [14]

    Herzer G 1996 J. Magn. Magn. Mater. 157-158 133Google Scholar

    [15]

    Nielsen O V, Nielsen H J V 1980 Solid State Commun. 35 281Google Scholar

    [16]

    Ohnuma M, Hono K, Yanai T, Fukunaga H, Yoshizawa Y 2003 Appl. Phys. Lett. 83 2859Google Scholar

    [17]

    Ohnuma M, Hono K, Yanai T, Nakano H, Fukunaga H, Yoshizawa Y 2005 Appl. Phys. Lett. 86 152513Google Scholar

    [18]

    Ohnuma M, Yanai T, Hono K, Nakano M, Fukunaga H, Yoshizawa Y, Herzer G 2010 J. Appl. Phys. 108 093927Google Scholar

    [19]

    Nutor R K, Xu X J, Fan X Z, He X W, Fang Y Z 2018 Chinese J. Phys. 56 180Google Scholar

    [20]

    Nutor R K, Xu X J, Fan X Z, He X W, Lu X A, Fang Y Z 2019 J. Magn. Magn. Mater. 471 544

    [21]

    Nutor R K, Fan X Z, He X W, Xu X J, Lu X A, Jiang J Z, Fang Y Z 2019 J. Alloys Compd. 774 1243Google Scholar

    [22]

    Kurlyandskaya G V, Lukshina V A, Larrañaga A, Orue I, Zaharova A A, Shishkin D A 2013 J. Alloys Compd. 566 31Google Scholar

    [23]

    Ohnuma M, Herzer G, Kozikowski P, Polak C, Budinsky V, Koppoju S 2012 Acta. Mater. 60 1278Google Scholar

    [24]

    Leary A M, Keylin V, Ohodnicki P R, McHenry M E 2015 J. Appl. Phys. 117 17A338Google Scholar

    [25]

    Herzer G, Schulz R US Patent 6 254 695 B1 [2001-06-03]

    [26]

    Hilzinger H R 1981 Proceedings of the 4th International Conference on Rapidly Quenched Metals Sendai, Japan, August 24–28, 1981 p701

    [27]

    许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟 2019 物理学报 68 137501Google Scholar

    Xu X J, Fang Z, Lu X A, Ye H Q, Fan X Z, Zheng J J, He X W, Guo C Y, Li W Z, Fang Y Z 2019 Acta Phys. Sin. 68 137501Google Scholar

    [28]

    Wu C, Chen H P, Lv H P, Yan M 2016 J. Alloys Compd. 673 278Google Scholar

    [29]

    Allia P, Baricco M, Tiberto P, Vinai F 1993 J. Appl. Phys. 74 3137Google Scholar

    [30]

    Fan X Z, He X W, Nutor R K, Pan R M, Zheng J J, Ye H Q, Wu F M, Jiang J Z, Fang Y Z 2019 J. Magn. Magn. Mater. 469 349Google Scholar

    [31]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

  • 图 1  张应力退火过程Fe基合金应变及应变速率曲线 (a) 应变; (b)应变速率

    Figure 1.  Strain and strain rates curves of Fe-based alloy ribbons during tensile stress annealing: (a) Strains; (b) strain rates.

    图 2  张应力退火Fe基合金残余应变与应力关系曲线 (a) 轴向; (b)横向

    Figure 2.  Residual macro-strains of Fe-based alloy ribbons as a function of annealing tensile stress: (a) Axial direction; (b) transverse direction.

    图 3  张应力退火Fe基合金薄带 (a) LDGMI效应; (b)磁各向异性与退火张应力关系

    Figure 3.  Fe-based alloy ribbons annealed with different tensile stress: (a) LDGMI effect; (b) the magnetic anisotropy as a function of annealing tensile stress.

    图 4  Fe基合金薄带SMA的弛豫动力学曲线

    Figure 4.  Relaxation dynamics curve of SMA in Fe-based alloy ribbons.

    图 5  张应力退火及回火Fe基合薄带XRD谱 (a)轴向; (b)横向

    Figure 5.  The XRD patterns of Fe-based alloy ribbons annealed with tensile stress and isothermal tempered treatment: (a) The diffraction vector is parallels to ribbon’s axial direction; (b) the diffraction vector is parallels to ribbon’s transverse direction.

    图 6  Fe基合金LPA弛豫动力学曲线

    Figure 6.  Relaxation dynamics curve of LPA in Fe-based alloy ribbons.

    图 7  自由退火Fe基合金薄带SRXRD图谱 (a)全谱(3°—38°); (b) (110)分峰拟合

    Figure 7.  The SRXRD patterns of Fe-based alloy ribbons annealed without tensile stress: (a) The full spectrum diagram of SRXRD (3°—38°); (b) the multi-peaks fitting of (110) diffraction peak.

    图 8  NGDA诱导感生磁各向异性与应力关系曲线

    Figure 8.  Dependence of the magnetic anisotropy induced by NGDA on tensile stress in Fe-based alloy ribbons.

    表 1  自由退火Fe基合金薄带的结构参数

    Table 1.  Structural parameters of Fe-based alloy ribbons annealed without tensile stress.

    衍射矢量晶粒尺寸/nm晶化分数晶粒间隙
    D(110)D(200)D(211)D(220)D(310)Vcr/%δ0/nm
    轴向9.3810.8711.279.4512.9451.042.76
    横向9.3011.7712.0310.4012.6651.272.74
    平均值11.0051.162.75
    DownLoad: CSV

    表 2  张应力退火Fe基合金薄带结构和磁学参数

    Table 2.  Structural and magnetic parameters of Fe-based alloy ribbons annealed with different tensile stress.

    张应力
    σ/MPa
    分布各向异性
    ∆δ/nm
    磁各向异性
    Hk/(A·m–1)K/(J·m–3)Kd/(J·m–3)Ke/(J·m–3)
    0047.5127.250
    530.051181.73692.1499.67592.47
    1170.142001.461229.06176.981052.08
    1700.203194.231972.59284.051688.54
    2230.284540.542777.20399.922377.28
    2700.385645.523495.28503.322991.96
    3430.517335.804498.91647.843851.07
    4100.659380.545786.89833.314953.58
    DownLoad: CSV
  • [1]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [2]

    Li Y M, Jia X J, Zhang W, Zhang Y, Xie G Q, Qiu Z Y, Luan J H, Jiao Z B 2021 J. Mater. Sci. Technol. 65 171Google Scholar

    [3]

    Corte-Leon P, Zhukova V, Blanco J M, González-Legarreta L, Ipatov M, Zhukov A 2020 J. Magn. Magn. Mater. 510 166939Google Scholar

    [4]

    Sai Ram B, Paul A K, Kulkarni S V 2021 J. Magn. Magn. Mater. 537 16820

    [5]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [6]

    马海健, 魏文庆, 鲍文科, 神祥博, 王长春, 王伟民 2020 稀有金属材料与工程 49 2904

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare Metal Mat. Eng. 49 2904

    [7]

    Liu T, Wang A D, Zhao C L, Yue S Q, Wang X M, Liu C T 2019 Mater. Res. Bull. 112 323Google Scholar

    [8]

    Lukshina V A, Dmitrieva N V, Cerdeira M A, Potapov A P 2012 J. Alloys Compd. 536 374Google Scholar

    [9]

    Correa A M, Bohn F 2018 J. Magn. Magn. Mater. 453 30Google Scholar

    [10]

    Varga L K 2020 J. Magn. Magn. Mater. 500 166327Google Scholar

    [11]

    Fang Y Z, Zheng J J, Wu F M, Xu Q M, Zhang J Q, Ye H Q, Zheng J L, Li T Y 2010 Appl. Phys. Lett. 96 092508Google Scholar

    [12]

    Néel L 1954 J. Phys. 4 225

    [13]

    Hofmann B, Kronmüller H 1996 J. Magn. Magn. Mater. 152 91Google Scholar

    [14]

    Herzer G 1996 J. Magn. Magn. Mater. 157-158 133Google Scholar

    [15]

    Nielsen O V, Nielsen H J V 1980 Solid State Commun. 35 281Google Scholar

    [16]

    Ohnuma M, Hono K, Yanai T, Fukunaga H, Yoshizawa Y 2003 Appl. Phys. Lett. 83 2859Google Scholar

    [17]

    Ohnuma M, Hono K, Yanai T, Nakano H, Fukunaga H, Yoshizawa Y 2005 Appl. Phys. Lett. 86 152513Google Scholar

    [18]

    Ohnuma M, Yanai T, Hono K, Nakano M, Fukunaga H, Yoshizawa Y, Herzer G 2010 J. Appl. Phys. 108 093927Google Scholar

    [19]

    Nutor R K, Xu X J, Fan X Z, He X W, Fang Y Z 2018 Chinese J. Phys. 56 180Google Scholar

    [20]

    Nutor R K, Xu X J, Fan X Z, He X W, Lu X A, Fang Y Z 2019 J. Magn. Magn. Mater. 471 544

    [21]

    Nutor R K, Fan X Z, He X W, Xu X J, Lu X A, Jiang J Z, Fang Y Z 2019 J. Alloys Compd. 774 1243Google Scholar

    [22]

    Kurlyandskaya G V, Lukshina V A, Larrañaga A, Orue I, Zaharova A A, Shishkin D A 2013 J. Alloys Compd. 566 31Google Scholar

    [23]

    Ohnuma M, Herzer G, Kozikowski P, Polak C, Budinsky V, Koppoju S 2012 Acta. Mater. 60 1278Google Scholar

    [24]

    Leary A M, Keylin V, Ohodnicki P R, McHenry M E 2015 J. Appl. Phys. 117 17A338Google Scholar

    [25]

    Herzer G, Schulz R US Patent 6 254 695 B1 [2001-06-03]

    [26]

    Hilzinger H R 1981 Proceedings of the 4th International Conference on Rapidly Quenched Metals Sendai, Japan, August 24–28, 1981 p701

    [27]

    许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟 2019 物理学报 68 137501Google Scholar

    Xu X J, Fang Z, Lu X A, Ye H Q, Fan X Z, Zheng J J, He X W, Guo C Y, Li W Z, Fang Y Z 2019 Acta Phys. Sin. 68 137501Google Scholar

    [28]

    Wu C, Chen H P, Lv H P, Yan M 2016 J. Alloys Compd. 673 278Google Scholar

    [29]

    Allia P, Baricco M, Tiberto P, Vinai F 1993 J. Appl. Phys. 74 3137Google Scholar

    [30]

    Fan X Z, He X W, Nutor R K, Pan R M, Zheng J J, Ye H Q, Wu F M, Jiang J Z, Fang Y Z 2019 J. Magn. Magn. Mater. 469 349Google Scholar

    [31]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

  • [1] Xu Xiao-Jia, Fang Zheng, Lu Xuan-Ang, Ye Hui-Qun, Fan Xiao-Zhen, Zheng Jin-Ju, He Xing-Wei, Guo Chun-Yu, Li Wen-Zhong, Fang Yun-Zhang. The characteristics of multiple isothermal tempered Fe-based alloy ribbons. Acta Physica Sinica, 2019, 68(13): 137501. doi: 10.7498/aps.68.20190017
    [2] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [3] Chen Chuan-Wen, Xiang Yang. Magnetization distribution in exchange spring bilayers with mutually orthogonal anisotropies. Acta Physica Sinica, 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [4] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [5] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [6] Li Yi-Ding, Zhang Peng-Fei, Zhang Hui, Xu Hong-Liang. Modification from the spin to the synchrotron radiation from a relativistic electron. Acta Physica Sinica, 2013, 62(9): 094103. doi: 10.7498/aps.62.094103
    [7] Liu Na, Wang Hai, Zhu Tao. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Physica Sinica, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [8] Hong Qing-Quan, Zhong Wei-Bo, Yu Yan-Zhong, Cai Zhi-Shan, Chen Mu-Sheng, Lin Shun-Da. Radiation power of electric diople in magnetic anisotropic medium. Acta Physica Sinica, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [9] Gu Wen-Juan, Pan Jing, Du Wei, Hu Jing-Guo. Measurement of magnetic anisotropyby ferromagnetic resonance. Acta Physica Sinica, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [10] Hong Qing-Quan, Yu Yan-Zhong, Cai Zhi-Shan, Chen Mu-Sheng, Lin Shun-Da. Radiation powers of magnetic dipole and electric quadrupole in magnetic anisotropic medium. Acta Physica Sinica, 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [11] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [12] Ma Li, Zhu Zhi-Yong, Li Min, Yu Shi-Dan, Cui Qi-Liang, Zhou Qiang, Chen Jing-Lan, Wu Guang-Heng. Structure and magnetic properties of stress-induced martensites in ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, 2009, 58(5): 3479-3484. doi: 10.7498/aps.58.3479
    [13] Wang Si-Sheng, Kong Rui-Hong, Tian Zhen-Yu, Shan Xiao-Bin, Zhang Yun-Wu, Sheng Liu-Si, Wang Zhen-Ya, Hao Li-Qing, Zhou Shi-Kang. Research on photoionization of Ar·NO cluster using synchrotron radiation. Acta Physica Sinica, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [14] Guo Xiao-Yun, Shi Cai-Tu, Zhang Jiu-Chang, Xin Hong-Bing. Characteristics of synchrotron radiation and the structure of the permanent magnetic wiggler. Acta Physica Sinica, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [15] GUAN PENG, LIU YI-HUA. A NEW MODEL FOR INDUCED ANISOTROPY IN AMORPHOUS ALLOYS. Acta Physica Sinica, 1989, 38(7): 1182-1186. doi: 10.7498/aps.38.1182
    [16] LI YI-BING, LI SHAO-PING. MAGNETO-EXCHANGE MODES IN ANISOTROPIC MEDIA. Acta Physica Sinica, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [17] ZENG XUN-YI, LU XIAO-JIA, WANG YA-QI. THE ORIGIN OF GROWTH-INDUCED MAGNETIC ANISOTROPY IN YIG. Acta Physica Sinica, 1989, 38(11): 1891-1895. doi: 10.7498/aps.38.1891
    [18] YU JIANG, HU GANG. THE SCALING PROPERTIES OF DLA CLUSTERS WITH ANISOTROPIC DIFFUSION. Acta Physica Sinica, 1989, 38(2): 202-208. doi: 10.7498/aps.38.202
    [19] KUANG YU-PING, WENG SHI-CHUN. THE SPIN WAVE THEORY OF FERROMAGNETIC ANISOTROPY IN CUBIC CRYSTALS. Acta Physica Sinica, 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
    [20] HSIANC JEN-SHENG. ON THE PARAMAGNETIC ANISOTROPY OF SINGLE CRYSTALS OF CHROME ALUMS. Acta Physica Sinica, 1957, 13(3): 177-180. doi: 10.7498/aps.13.177
Metrics
  • Abstract views:  3839
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2022
  • Accepted Date:  03 September 2022
  • Available Online:  09 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回