Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of SrSnO3 as transparent conductive oxide

Ding Li-Jie Zhang Xiao-Tian Guo Xin-Yi Xue Yang Lin Chang-Qing Huang Dan

Citation:

First-principles study of SrSnO3 as transparent conductive oxide

Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan
PDF
HTML
Get Citation
  • As a wide band gap semiconductor with perovskite structure, SnSnO3 is regarded as a promising candidate of transparent conductive oxides due to its superior properties like high transparency, non-toxicity and low price. In this work, the electronic structure of SrSnO3 is obtained through first-principles calculations based on HSE06 hybrid functional. Especially, we investigate the defect formation energy and transition levels of the intrinsic and external defects in SrSnO3. The intrinsic defects including the anti-site defects (SrSn and SnSr), the vacancy defects (VSr, VSn, and VO), and the interstitial defects (Sri, Sni and Oi) are considered while the external doping defects are taken into account, including the substitution of Li, Na, K, Al, Ga, In for Sr site, Al, Ga, In, P, As, Sb for Sn site, and N, P at O site. Subsequently, the suitable doping elements and the corresponding experimental preparation environments are pointed out. Furthermore, we discuss the mechanism of its conductance according to the energy positions of the band edges. Our calculation results demonstrate that SrSnO3 is an indirect-type semiconductor with a fundamental band gap of 3.55 eV and an optical band gap of 4.10 eV and then has a good visible light transmittance. Its valence band maximum (VBM) comes from O-2p state while its conduction band minimum (CBM) mainly originates from Sn-5s state. In consistent with the delocalized Sn-5s state at CBM, the electron effective mass is light and isotropic, which is beneficial to n-type conductance. The n-type intrinsic defects SnSr and Vo have lower defect formation energy than the p-type intrinsic defects under O-poor condition while the n-type and p-type defects with low defect formation energy are almost equal under O-rich condition. Moreover, the transition levels of SnSr and VO are both deep. Therefore, SrSnO3 cannot have a good conductance without external doping. Our calculations also demonstrate that it is hard to produce an efficient p-type external doping due to the compensation effect by VO. On the other hand, substitution of As or Sb for Sn site can result in an effective n-type external doping due to their low defect formation energy and shallow transition levels. According to the low energy positions of VBM (–7.5 eV) and CBM (–4.0 eV) of SrSnO3, we explain the reason why it is easy to realize an n-type conductance but hard to produce a high-performance p-type conductance, which follows the doping rules for wide band gap semiconductors. Finally, Sb-doped SrSnO3 is proposed as a promising candidate for n-type transparent conductive materials.
      Corresponding author: Huang Dan, danhuang@gxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61964002), and the Joint Fund Project of Guangdong and Guangxi, China (Grant No. 2020A1515410008).
    [1]

    Bitla Y, Chu Y H 2020 Nanoscale 12 18523Google Scholar

    [2]

    Stadler A 2012 Materials 5 661Google Scholar

    [3]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo Jin H, Sadhanala A, Myoung N, Yoo S, Im Sang H, Friend Richard H, Lee T W 2015 Science 350 1222Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [5]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947Google Scholar

    [6]

    Comini E, Faglia G, Sberveglieri G, Pan Z, Wang Z L 2002 Appl. Phys. Lett. 81 1869Google Scholar

    [7]

    Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47Google Scholar

    [8]

    Dou L, Yang Y, You J, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [9]

    Lee Michael M, Teuscher J, Miyasaka T, Murakami Takurou N, Snaith Henry J 2012 Science 338 643Google Scholar

    [10]

    Baedeker K 1907 Ann. Phys. 327 749Google Scholar

    [11]

    Minami T 2008 Thin Solid Films 516 1314Google Scholar

    [12]

    Minami T 2008 Thin Solid Films 516 5822Google Scholar

    [13]

    Chen M J, Yang J R, Shiojiri M 2012 Semicond. Sci. Technol. 27 074005Google Scholar

    [14]

    Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q, Kuznetsov A Y 2009 Adv. Mater. 21 4625Google Scholar

    [15]

    王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰 2020 物理学报 69 197801Google Scholar

    Wang Y F, Xie X C, Liu X J, Han B, Wu H H, Lian N N, Yang F, Song Q G, Pei H L, Li J J 2020 Acta. Phys. Sin. 69 197801Google Scholar

    [16]

    Wu F, Tong X, Zhao Z, Gao J, Zhou Y, Kelly P 2017 J. Alloys Compd. 695 765Google Scholar

    [17]

    Fleischer K, Norton E, Mullarkey D, Caffrey D, Shvets I V 2017 Materials 10 1019Google Scholar

    [18]

    Zhang K H L, Xi K, Blamire M G, Egdell R G 2016 J. Phys. Condens. Mater. 28 383002Google Scholar

    [19]

    Cao R, Deng H X, Luo J W 2019 ACS Appl. Mater. Interfaces 11 24837Google Scholar

    [20]

    Dixon S C, Scanlon D O, Carmalt C J, Parkin I P 2016 J. Mater. Chem. C 4 6946Google Scholar

    [21]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631Google Scholar

    [22]

    Selopal G S, Milan R, Ortolani L, Morandi V, Rizzoli R, Sberveglieri G, Veronese G P, Vomiero A, Concina I 2015 Sol. Energy Mater. Sol. Cells 135 99Google Scholar

    [23]

    王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802Google Scholar

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802Google Scholar

    [24]

    王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇 2016 物理学报 65 087802Google Scholar

    Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802Google Scholar

    [25]

    Ong K P, Fan X, Subedi A, Sullivan M B, Singh D J 2015 APL Mater. 3 062505Google Scholar

    [26]

    Riza M A, Ibrahim M A, Ahamefula U C, Mat Teridi M A, Ahmad Ludin N, Sepeai S, Sopian K 2016 Sol. Energy 137 371Google Scholar

    [27]

    Liu Q, Dai J, Zhang X, Zhu G, Liu Z, Ding G 2011 Thin Solid Films 519 6059Google Scholar

    [28]

    Liu Q, Jin F, Gao G, Wang W 2017 J. Alloys Compd. 717 62Google Scholar

    [29]

    Kumar Y, Kumar R, Asokan K, Choudhary R J, Phase D M, Singh A P 2021 J. Mater. Sci. -Mater. Electron. 32 11835Google Scholar

    [30]

    Wei M, Sanchela A V, Feng B, Ikuhara Y, Cho H J, Ohta H 2020 Appl. Phys. Lett. 116 022103Google Scholar

    [31]

    Liu Y, Zhou Y, Jia D, Zhao J, Wang B, Cui Y, Li Q, Liu B 2020 J. Mater. Sci. Technol. 42 212Google Scholar

    [32]

    Rahman A B A, Sarjadi M S, Alias A, Ibrahim M A 2019 J. Phys:Conf. Ser. 1358 012043Google Scholar

    [33]

    Kumar Y, Kumar R, Choudhary R J, Thakur A, Singh A P 2020 Ceram. Int. 46 17569Google Scholar

    [34]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [35]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Heyd J, Scuseria G E 2004 J. Chem. Phys. 121 1187Google Scholar

    [38]

    Green M A, Prassides K, Day P, Neumann D A 2000 J. Inorg. Mater. 2 35Google Scholar

    [39]

    Schumann T, Raghavan S, Ahadi K, Kim H, Stemmer S 2016 J. Vac. Sci. Technol., A 34 050601

    [40]

    Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667Google Scholar

    [41]

    Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205Google Scholar

    [42]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104Google Scholar

    [43]

    Singh M K, Hong J W, Karan N K, Jang H M, Katiyar R S, Redfern S A T, Scott J F 2010 J. Phys. Condens. Matter. 22 095901Google Scholar

    [44]

    Gao Q, Chen H, Li K, Liu Q 2018 ACS Appl. Mater. Interfaces 10 27503Google Scholar

    [45]

    KC S, Rowberg A J E, Weston L, Van de Walle C G 2019 J. Appl. Phys. 126 195701Google Scholar

    [46]

    Putz M V, Russo N, Sicilia E 2005 Theor. Chem. Acc. 114 38Google Scholar

    [47]

    Huang D, Xu J P, Jiang J W, Zhao Y J, Peng B L, Zhou W Z, Guo J 2017 Phys. Lett. A 381 2743Google Scholar

    [48]

    Hu S, Xia B, Yan Y, Xiao Z 2020 Phys. Rev. Mater. 4 115201Google Scholar

    [49]

    Schein F L, von Wenckstern H, Grundmann M 2013 Appl. Phys. Lett. 102 092109Google Scholar

    [50]

    Arai T, Iimura S, Kim J, Toda Y, Ueda S, Hosono H 2017 J. Am. Chem. Soc. 139 17175Google Scholar

    [51]

    Zhang Z, Guo Y, Robertson J 2022 Chem. Mater. 34 643Google Scholar

    [52]

    Yan Y, Wei S H 2008 Phys. Status Solidi B 245 641Google Scholar

  • 图 1  SrSnO3的单胞结构示意图.

    Figure 1.  The crystal structure of SrSnO3 unit cell.

    图 2  SrSnO3的总态密度(a), Sr原子(b), Sn原子(c)以及O原子(d)的分波态密度. 体系费米能级设为零

    Figure 2.  The total density of states (TDOS) (a), partial density of states (PDOS) of Sr (b), Sn (c) and O (d) in SrSnO3. The Fermi energy level is set to zero.

    图 3  SrSnO3中价带顶和导带底的电荷密度实空间分布

    Figure 3.  The electronic charge densities of the VBM and CBM in SrSnO3.

    图 4  SrSnO3的能带结构(a)和光吸收系数(b). 图(b)中彩色区域可见光谱范围, SrSnO3在可见光谱基本无光吸收, 说明其具有较好的透明性

    Figure 4.  The band structure (a) and the absorption coefficients (b) of SrSnO3. Colorful regions in figure b are the range of visible light spectrum. SrSnO3 cannot absorb light at the range of visible light spectrum, which stands for it has a good transparency.

    图 5  形成稳定SrSnO3允许的相对化学势范围(图中淡黄色区域). AD点分别代表四个不同的相对化学势极限条件

    Figure 5.  Allowed relative chemical potential region (faint yellow area) for a stable SrSnO3. Points A–D represent four different chemical potential limit conditions.

    图 6  SrSnO3中本征缺陷的缺陷形成能, AD点分别代表不同的相对化学势极限条件, 对应不同的实验制备环境

    Figure 6.  Defect formation energies of intrinsic defects in SrSnO3. Points AD represent different chemical potential limit conditions, which is corresponding to the different preparation environments for experiments.

    图 7  在不同相对化学势条件下, 各外界掺杂施主型缺陷的缺陷形成能. 灰色的线条表示为可能产生补偿作用的p型本征缺陷的缺陷形成能

    Figure 7.  The defect formation energies of external donor defects under different relative chemical potential conditions. The grey lines represent the defect formation energies of p-type intrinsic defects which may lead to a carrier compensation effect.

    图 8  在不同相对化学势条件下, 各外界掺杂受主型缺陷的缺陷形成能. 灰色的线条表示为可能产生补偿作用的n型本征缺陷的缺陷形成能

    Figure 8.  The defect formation energies of external acceptor defects under different relative chemical potential conditions. The grey lines represent the defect formation energies of n-type intrinsic defects which may lead to a carrier compensation effect.

    图 9  一系列宽禁带半导体材料SnO2, In2O3, SrSnO3, CuI和Cu2O的带边能量位置对比, 带隙宽度分别为3.52 eV, 3.73 eV, 3.55 eV, 3.1 eV以及2.02 eV

    Figure 9.  The band-edge energy positions among a series of wide band gap semiconductors: SnO2, In2O3, SrSnO3, CuI and Cu2O. The band gaps of them are 3.52 eV, 3.73 eV, 3.55 eV, 3.1 eV and 2.02 eV, respectively.

    表 1  SrSnO3中电子和空穴的有效质量(单位: m0)

    Table 1.  Effective masses of electrons and holes in SrSnO3 (in: m0).

    有效质量电子空穴
    $ {m}_{001}^{*} $0.361.72
    $ {m}_{010}^{*} $0.320.44
    $ {m}_{100}^{*} $0.360.48
    DownLoad: CSV
  • [1]

    Bitla Y, Chu Y H 2020 Nanoscale 12 18523Google Scholar

    [2]

    Stadler A 2012 Materials 5 661Google Scholar

    [3]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo Jin H, Sadhanala A, Myoung N, Yoo S, Im Sang H, Friend Richard H, Lee T W 2015 Science 350 1222Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [5]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947Google Scholar

    [6]

    Comini E, Faglia G, Sberveglieri G, Pan Z, Wang Z L 2002 Appl. Phys. Lett. 81 1869Google Scholar

    [7]

    Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47Google Scholar

    [8]

    Dou L, Yang Y, You J, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [9]

    Lee Michael M, Teuscher J, Miyasaka T, Murakami Takurou N, Snaith Henry J 2012 Science 338 643Google Scholar

    [10]

    Baedeker K 1907 Ann. Phys. 327 749Google Scholar

    [11]

    Minami T 2008 Thin Solid Films 516 1314Google Scholar

    [12]

    Minami T 2008 Thin Solid Films 516 5822Google Scholar

    [13]

    Chen M J, Yang J R, Shiojiri M 2012 Semicond. Sci. Technol. 27 074005Google Scholar

    [14]

    Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q, Kuznetsov A Y 2009 Adv. Mater. 21 4625Google Scholar

    [15]

    王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰 2020 物理学报 69 197801Google Scholar

    Wang Y F, Xie X C, Liu X J, Han B, Wu H H, Lian N N, Yang F, Song Q G, Pei H L, Li J J 2020 Acta. Phys. Sin. 69 197801Google Scholar

    [16]

    Wu F, Tong X, Zhao Z, Gao J, Zhou Y, Kelly P 2017 J. Alloys Compd. 695 765Google Scholar

    [17]

    Fleischer K, Norton E, Mullarkey D, Caffrey D, Shvets I V 2017 Materials 10 1019Google Scholar

    [18]

    Zhang K H L, Xi K, Blamire M G, Egdell R G 2016 J. Phys. Condens. Mater. 28 383002Google Scholar

    [19]

    Cao R, Deng H X, Luo J W 2019 ACS Appl. Mater. Interfaces 11 24837Google Scholar

    [20]

    Dixon S C, Scanlon D O, Carmalt C J, Parkin I P 2016 J. Mater. Chem. C 4 6946Google Scholar

    [21]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631Google Scholar

    [22]

    Selopal G S, Milan R, Ortolani L, Morandi V, Rizzoli R, Sberveglieri G, Veronese G P, Vomiero A, Concina I 2015 Sol. Energy Mater. Sol. Cells 135 99Google Scholar

    [23]

    王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802Google Scholar

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802Google Scholar

    [24]

    王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇 2016 物理学报 65 087802Google Scholar

    Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802Google Scholar

    [25]

    Ong K P, Fan X, Subedi A, Sullivan M B, Singh D J 2015 APL Mater. 3 062505Google Scholar

    [26]

    Riza M A, Ibrahim M A, Ahamefula U C, Mat Teridi M A, Ahmad Ludin N, Sepeai S, Sopian K 2016 Sol. Energy 137 371Google Scholar

    [27]

    Liu Q, Dai J, Zhang X, Zhu G, Liu Z, Ding G 2011 Thin Solid Films 519 6059Google Scholar

    [28]

    Liu Q, Jin F, Gao G, Wang W 2017 J. Alloys Compd. 717 62Google Scholar

    [29]

    Kumar Y, Kumar R, Asokan K, Choudhary R J, Phase D M, Singh A P 2021 J. Mater. Sci. -Mater. Electron. 32 11835Google Scholar

    [30]

    Wei M, Sanchela A V, Feng B, Ikuhara Y, Cho H J, Ohta H 2020 Appl. Phys. Lett. 116 022103Google Scholar

    [31]

    Liu Y, Zhou Y, Jia D, Zhao J, Wang B, Cui Y, Li Q, Liu B 2020 J. Mater. Sci. Technol. 42 212Google Scholar

    [32]

    Rahman A B A, Sarjadi M S, Alias A, Ibrahim M A 2019 J. Phys:Conf. Ser. 1358 012043Google Scholar

    [33]

    Kumar Y, Kumar R, Choudhary R J, Thakur A, Singh A P 2020 Ceram. Int. 46 17569Google Scholar

    [34]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [35]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Heyd J, Scuseria G E 2004 J. Chem. Phys. 121 1187Google Scholar

    [38]

    Green M A, Prassides K, Day P, Neumann D A 2000 J. Inorg. Mater. 2 35Google Scholar

    [39]

    Schumann T, Raghavan S, Ahadi K, Kim H, Stemmer S 2016 J. Vac. Sci. Technol., A 34 050601

    [40]

    Mizoguchi H, Eng H W, Woodward P M 2004 Inorg. Chem. 43 1667Google Scholar

    [41]

    Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63 075205Google Scholar

    [42]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104Google Scholar

    [43]

    Singh M K, Hong J W, Karan N K, Jang H M, Katiyar R S, Redfern S A T, Scott J F 2010 J. Phys. Condens. Matter. 22 095901Google Scholar

    [44]

    Gao Q, Chen H, Li K, Liu Q 2018 ACS Appl. Mater. Interfaces 10 27503Google Scholar

    [45]

    KC S, Rowberg A J E, Weston L, Van de Walle C G 2019 J. Appl. Phys. 126 195701Google Scholar

    [46]

    Putz M V, Russo N, Sicilia E 2005 Theor. Chem. Acc. 114 38Google Scholar

    [47]

    Huang D, Xu J P, Jiang J W, Zhao Y J, Peng B L, Zhou W Z, Guo J 2017 Phys. Lett. A 381 2743Google Scholar

    [48]

    Hu S, Xia B, Yan Y, Xiao Z 2020 Phys. Rev. Mater. 4 115201Google Scholar

    [49]

    Schein F L, von Wenckstern H, Grundmann M 2013 Appl. Phys. Lett. 102 092109Google Scholar

    [50]

    Arai T, Iimura S, Kim J, Toda Y, Ueda S, Hosono H 2017 J. Am. Chem. Soc. 139 17175Google Scholar

    [51]

    Zhang Z, Guo Y, Robertson J 2022 Chem. Mater. 34 643Google Scholar

    [52]

    Yan Y, Wei S H 2008 Phys. Status Solidi B 245 641Google Scholar

  • [1] Zhong Jian-Cheng, Zhang Xiao-Tian, Lin Chang-Qing, Xue Yang, Tang Huan, Huang Dan. Top cell design and optimization of all-chalcopyrite CuGaSe2/CuInSe2 two-terminal tandem solar cells: first-principles calculations and device simulations. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240187
    [2] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [3] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [4] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [5] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [6] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [7] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [8] Gao Miao, Kong Xin, Lu Zhong-Yi, Xiang Tao. First-principles study of electron-phonon coupling and superconductivity in compound Li2C2. Acta Physica Sinica, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [9] Wang Xiao-Tian, Dai Xue-Fang, Jia Hong-Ying, Wang Li-Ying, Liu Ran, Li Yong, Liu Xiao-Chuang, Zhang Xiao-Ming, Wang Wen-Hong, Wu Guang-Heng, Liu Guo-Dong. The band inversion and topological insulating state of Heusler alloys:X2RuPb (X=Lu, Y). Acta Physica Sinica, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [10] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [11] Li Wan-Jun, Fang Liang, Qin Guo-Ping, Ruan Hai-Bo, Kong Chun-Yang, Zheng Ji, Bian Ping, Xu Qing, Wu Fang. First-principles study of Ag-N dual-doped p-type ZnO. Acta Physica Sinica, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [12] Peng Li-Ping, Xia Zheng-Cai, Yang Chang-Quan. First-principles calculation of matal and nonmetal codoped anantase TiO2. Acta Physica Sinica, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [13] Peng Li-Ping, Xia Zheng-Cai, Yin Jian-Wu. First-principles calculation of rutile and anatase TiO2 intrinsic defect. Acta Physica Sinica, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [14] Zhang Hua, Tang Yuan-Hao, Zhou Wei-Wei, Li Pei-Juan, Shi Si-Qi. Antisite defect of LiFePO4: A first-principles study. Acta Physica Sinica, 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
    [15] Gu Mu, Lin Ling, Liu Bo, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. Fist-principle calculation for electronic structure of M’-GdTaO4. Acta Physica Sinica, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [16] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] Hu Fang, Ming Xing, Fan Hou-Gang, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [18] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
Metrics
  • Abstract views:  2929
  • PDF Downloads:  127
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2022
  • Accepted Date:  15 September 2022
  • Available Online:  23 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回