Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time-evolving matrix product operator method and its applications in open quantum system

Chen Ruo-Fan

Citation:

Time-evolving matrix product operator method and its applications in open quantum system

Chen Ruo-Fan
PDF
HTML
Get Citation
  • Open quantum systems play an important role in developing quantum sciences, and therefore the study of corresponding numerical method is of great significance. For the open quantum systems, the quasi-adiabatic propagator path integral invented in 1990s is one of the few numerically exact methods. However, its computational complexity scales exponentially with system size and correlation length, and therefore its application is limited in practical calculation. In recent years, the study and application of tensor network have made rapid progress. Representing the path integral by tensor network makes the computational complexity increase polynomially, thus greatly improving the computational efficiency. Such a new method is called time-evolving matrix product operator. At the very beginning, the reduced density matrix is represented as a matrix product state. Then the time evolution of the system can be achieved by iteratively applying matrix product operators to the matrix product state. The iterative process is amenable to the standard matrix product states compression algorithm, which keeps the computational cost on a polynomial scale. The time-evolving matrix product operator is an efficient, numerically exact and fully non-Markovian method, which has a broad application prospect in the study of quantum open systems. For instance, it is already used in the study of the thermalization, heat statistic, heat transfer and optimal control of the quantum open systems, and conversely it can be also used to investigate the effect of the system on the environment. In addition, the TEMPO method is naturally related to the process tensor, and can be used to calculate the correlation function of the system efficiently. In this article we review this method and its applications. We give a brief introduction of the path integral formalism of Caldeira-Leggett model. According to the path integral formalism, we demonstrate the usage of quasi-adiabatic propagator path integral method. we give the basic idea of matrix product states, and we show how to recast quasi-adiabatic propagator path integral method into time-evolving matrix product operators method by employing the concept of matrix product states and matrix product operators, and give a review of its applications. In addition, we use the calculation results of physical quantities, correlation functions and heat currents in the spin-boson model to illustrate the applications of the time-evolving matrix product operator method.
      Corresponding author: Chen Ruo-Fan, physcrf@sicnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12104328)
    [1]

    Weiss U 1993 Quantum Dissipative Systems (Singapore: World Scientific)

    [2]

    Breuer H P 2007 The Theory of Open Quantum Systems (New York: Oxford University Press)

    [3]

    Caldeira A O, Leggett A J 1981 Phys. Rev. Lett. 46 211Google Scholar

    [4]

    Caldeira A O, Leggett A J 1983 Physica A 121 587Google Scholar

    [5]

    Caldeira A, Leggett A 1983 Ann. Phys. 149 374Google Scholar

    [6]

    Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A, Zwerger W 1987 Rev. Mod. Phys. 59 1Google Scholar

    [7]

    Makarov D E, Makri N 1994 Chem. Phys. Lett. 221 482Google Scholar

    [8]

    Makri N 1995 J. Math. Phys. 36 2430Google Scholar

    [9]

    Makarov D E, Makri N 1995 Phys. Rev. B 52 R2257

    [10]

    Makarov D E, Makri N 1995 Phys. Rev. E 52 5863

    [11]

    Golosov A A, Friesner R A, Pechukas P 1999 J. Chem. Phys. 110 138Google Scholar

    [12]

    Shao J, Makri N 2002 J. Chem. Phys. 116 507Google Scholar

    [13]

    Dong K, Makri N 2004 Chem. Phys. 296 273Google Scholar

    [14]

    Dong K, Makri N 2004 Phys. Rev. A 70 042101Google Scholar

    [15]

    Thorwart M, Eckel J, Mucciolo E R 2005 Phys. Rev. B 72 235320Google Scholar

    [16]

    Nalbach P, Thorwart M 2009 Phys. Rev. Lett. 103 220401Google Scholar

    [17]

    Arceci L, Barbarino S, Fazio R, Santoro G E 2017 Phys. Rev. B 96 054301Google Scholar

    [18]

    Schollwöck U 2011 Ann. Phys. 326 96Google Scholar

    [19]

    Orús R 2014 Ann. Phys. 349 117Google Scholar

    [20]

    Strathearn A, Kirton P, Kilda D, Keeling J, Lovett B W 2018 Nat. Commun. 9 3322Google Scholar

    [21]

    Keldysh L V 1965 Sov. Phys. JETP 20 1018

    [22]

    Lifshitz E M, Pitaevskii L P 1981 Course of Theoretical Physics Volume 10: Physical Kinetics (Elsevier)

    [23]

    Kamenev A, Levchenko A 2009 Adv. Phys. 58 197Google Scholar

    [24]

    Wang J S, Agarwalla B K, Li H, Thingna J 2014 Front. Phys. 9 673

    [25]

    Chen R 2023 New J. Phys. 25 033035Google Scholar

    [26]

    Feynman R P, Vernon F L 1963 Ann. Phys. 24 118Google Scholar

    [27]

    Grabert H, Schramm P, Ingold G L 1988 Phys. Rep. 168 115Google Scholar

    [28]

    Negele J W, Orland H 1998 Quantum Many-Particle Systems (Colorado: Westview Press)

    [29]

    Trotter H F 1959 Proc. Amer. Math. Soc. 10 545Google Scholar

    [30]

    Suzuki M 1976 Commun. Math. Phys. 51 183Google Scholar

    [31]

    Makarov D E, Makri N 1993 Phys. Rev. A 48 3626Google Scholar

    [32]

    Makri N, Makarov D E 1995 J. Chem. Phys. 102 4600Google Scholar

    [33]

    Dattani N S, Pollock F A, Wilkins D M 2012 Quantum Phys. Lett. 1 35

    [34]

    Chen R, Xu X 2023 Eur. Phys. J. Plus 138 194Google Scholar

    [35]

    Verstraete F, García-Ripoll J J, Cirac J I 2004 Phys. Rev. Lett. 93 207204Google Scholar

    [36]

    Zwolak M, Vidal G 2004 Phys. Rev. Lett. 93 207205Google Scholar

    [37]

    Barthel T, Schollwöck U, White S R 2009 Phys. Rev. B 79 245101Google Scholar

    [38]

    Schollwöck U 2005 Rev. Mod. Phys. 77 259Google Scholar

    [39]

    Levin M, Nave C P 2007 Phys. Rev. Lett. 99 120601Google Scholar

    [40]

    Evenbly G, Vidal G 2015 Phys. Rev. Lett. 115 180405Google Scholar

    [41]

    Ran S J, Li W, Xi B, Zhang Z, Su G 2012 Phys. Rev. B 86 134429Google Scholar

    [42]

    Czarnik P, Cincio L, Dziarmaga J 2012 Phys. Rev. B 86 245101Google Scholar

    [43]

    Kshetrimayum A, Weimer H, Orús R 2017 Nat. Commun. 8 1291Google Scholar

    [44]

    Fishman M T, White S R 2015 Phys. Rev. B 92 075132Google Scholar

    [45]

    Dorda A, Ganahl M, Evertz H G, Linden W, Arrigoni E 2015 Phys. Rev. B 92 125145Google Scholar

    [46]

    Ganahl M, Aichhorn M, Evertz H G, Thunström P, Held K, Verstraete F 2015 Phys. Rev. B 92 155132Google Scholar

    [47]

    Wolf F A, Go A, McCulloch I P, Millis A J, Schollwöck U 2015 Phys. Rev. X 5 041032

    [48]

    Linden N O, Zingl M, Hubig C, Parcollet O, Schollwöck U 2020 Phys. Rev. B 101 041101Google Scholar

    [49]

    Kohn L, Santoro G E 2021 Phys. Rev. B 104 014303

    [50]

    Jørgensen M R, Pollock F A 2019 Phys. Rev. Lett. 123 240602Google Scholar

    [51]

    Carmichael H J 1999 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer-Verlag)

    [52]

    Gardiner C W, Zoller P 2004 Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Berlin: Springer-Verlag)

    [53]

    Jørgensen M R, Pollock F A 2020 Phys. Rev. A 102 052206Google Scholar

    [54]

    Cerrillo J, Cao J 2014 Phys. Rev. Lett. 112 110401Google Scholar

    [55]

    Popovic M, Mitchison M T, Strathearn A, Lovett B W, Goold J, Eastham P R 2021 PRX Quantum 2 020338Google Scholar

    [56]

    Fux G E, Butler E P, Eastham P R, Lovett B W, Keeling J 2021 Phys. Rev. Lett. 126 200401Google Scholar

    [57]

    Fux G E, Kilda D, Lovett B W, Keeling J 2022 10.48550/arXiv.2201.05529 [quant-ph]

    [58]

    Gribben D, Strathearn A, Fux G E, Kirton P, Lovett B W 2021 Quantum 6 847

    [59]

    Gribben D, Rouse D M, Iles-Smith J, Strathearn A, Maguire H, Kirton P, Nazir A, Gauger E M, Lovett B W 2022 PRX Quantum 3 010321Google Scholar

    [60]

    Ye E, Chan G K L 2021 J. Chem. Phys. 155 044104Google Scholar

    [61]

    Chiu Y F, Strathearn A, Keeling J 2022 Phys. Rev. A 106 012204Google Scholar

    [62]

    Otterpohl F, Nalbach P, Thorwart M 2022 Phys. Rev. Lett. 129 120406Google Scholar

    [63]

    Bose A 2022 Phys. Rev. B 105 024309

    [64]

    Florens S, Venturelli D, Narayanan R (edited by Chandra A K, Das A, Chakrabarti B K) 2010 Quantum Quenching, Annealing and Computation (Berlin, Heidelberg: Springer) p145

    [65]

    Hur K L (edited by Carr L D) 2010 Understanding Quantum Phase Transitions (New York: CRC Press) p217

    [66]

    Löfstedt R, Coppersmith S N 1994 Phys. Rev. Lett. 72 1947Google Scholar

    [67]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223Google Scholar

    [68]

    Grifoni M, Hänggi P 1998 Phys. Rep. 304 229Google Scholar

    [69]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [70]

    Brandes T, Aguado R, Platero G 2004 Phys. Rev. B 69 205326Google Scholar

    [71]

    Wang J S 2007 Phys. Rev. Lett. 99 160601Google Scholar

    [72]

    Segal D 2013 Phys. Rev. B 87 195436Google Scholar

    [73]

    Lü J T, Christensen R B, Wang J S, Hedegård P, Brandbyge M 2015 Phys. Rev. Lett. 114 096801Google Scholar

    [74]

    Ludovico M F, Lim J S, Moskalets M, Arrachea L, Sánchez D 2014 Phys. Rev. B 89 161306Google Scholar

    [75]

    Ludovico M, Arrachea L, Moskalets M, Sánchez D 2016 Entropy 18 419Google Scholar

    [76]

    Ludovico M F, Moskalets M, Sánchez D, Arrachea L 2016 Phys. Rev. B 94 035436Google Scholar

    [77]

    Ludovico M F, Arrachea L, Moskalets M, Sánchez D 2018 Phys. Rev. B 97 041416Google Scholar

  • 图 1  Keldysh回路$ \cal{C} $, 上部为正向分支, 下部为反向分 支[25]

    Figure 1.  Keldysh Contour $ \cal{C} $, the upper is forward branch and the lower is backward branch [25].

    图 2  递归关系的示意图 (a)递归公式(40); (b)从初始条件 $ F^{s_0} $开始演化N = 4步的递推步骤

    Figure 2.  An illustration of the recursive relation: (a) Recursive relation (40); (b) the iterative progress with N = 4 steps evolution from initial condition $ F^{s_0} $.

    图 3  自相关函数$ \alpha(t) $的一种典型形状[34]

    Figure 3.  A typical shape of autocorrelation function $ \alpha(t) $ [34].

    图 4  截断之后的递归关系(其中灰色方格代表(42)式中的求和) (a)递归公式(42); (b)从初始条件 $ F^{s_0} $开始演化到 $ N=4 $步时的递推步骤

    Figure 4.  An illustration of recursive relation after truncation, here the gray square stands for the summation in Eq. (42): (a) Recursive relation (42); (b) the iterative progress of $ N=4 $ steps evolution with initial condition $ F^{s_0} $.

    图 5  TEMPO算法中的一些张量网络图示 (a) $ F $张量的矩阵乘积态表示; (b) $ B $张量的矩阵乘积算符表示; (c)递归关系(40)的张量网络表示

    Figure 5.  An illustration of some tensor networks in TEMPO: (a) The matrix product states representation of $ F $ tensor; (b) the matrix product operators representation of $ B $ tensor; (c) the tensor network representation of recursive relation (40).

    图 6  $ N=4 $步演化的张量网络

    Figure 6.  Tensor network of $ N=4 $ steps evolution.

    图 7  $ \left\langle {{{\hat \sigma }_z}(t)} \right\rangle $在不同$ \Delta k_{\rm{max}} $下的演化

    Figure 7.  Dynamics of $ \left\langle {{{\hat \sigma }_z}(t)} \right\rangle $ with respect to different $ \Delta k_{\rm{max}} $

    图 8  $ \left\langle {{{\hat \sigma }_z}(t)} \right\rangle $在不同耦合强度$ \lambda $下的演化

    Figure 8.  Dynamics of $ \left\langle {{{\hat \sigma }_z}(t)} \right\rangle $ with respect to different coupling strength $ \lambda $.

    图 9  在不同$ \Delta k_{\rm{max}} $$ t_0 $下的关联函数$ C(t_0, t_0+t) $[34]

    Figure 9.  Correlation function $ C(t_0, t_0+t) $ with respect to different $ \Delta k_{\rm{max}} $ and $ t_0 $[34].

    图 10  系统和浴在$ T_1 $远大于$ T_2 $时的演化过程[25]

    Figure 10.  Evolution of system and bath when $ T_1 $ is much larger than $ T_2 $[25].

    图 11  系统和浴在$ T_1=T_2 $$ \lambda_1 $远大于$ \lambda_2 $时的演化过 程[25]

    Figure 11.  Evolution of system and bath when $ T_1=T_2 $ but $ \lambda_1 $ is larger than $ \lambda_2 $[25].

  • [1]

    Weiss U 1993 Quantum Dissipative Systems (Singapore: World Scientific)

    [2]

    Breuer H P 2007 The Theory of Open Quantum Systems (New York: Oxford University Press)

    [3]

    Caldeira A O, Leggett A J 1981 Phys. Rev. Lett. 46 211Google Scholar

    [4]

    Caldeira A O, Leggett A J 1983 Physica A 121 587Google Scholar

    [5]

    Caldeira A, Leggett A 1983 Ann. Phys. 149 374Google Scholar

    [6]

    Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A, Zwerger W 1987 Rev. Mod. Phys. 59 1Google Scholar

    [7]

    Makarov D E, Makri N 1994 Chem. Phys. Lett. 221 482Google Scholar

    [8]

    Makri N 1995 J. Math. Phys. 36 2430Google Scholar

    [9]

    Makarov D E, Makri N 1995 Phys. Rev. B 52 R2257

    [10]

    Makarov D E, Makri N 1995 Phys. Rev. E 52 5863

    [11]

    Golosov A A, Friesner R A, Pechukas P 1999 J. Chem. Phys. 110 138Google Scholar

    [12]

    Shao J, Makri N 2002 J. Chem. Phys. 116 507Google Scholar

    [13]

    Dong K, Makri N 2004 Chem. Phys. 296 273Google Scholar

    [14]

    Dong K, Makri N 2004 Phys. Rev. A 70 042101Google Scholar

    [15]

    Thorwart M, Eckel J, Mucciolo E R 2005 Phys. Rev. B 72 235320Google Scholar

    [16]

    Nalbach P, Thorwart M 2009 Phys. Rev. Lett. 103 220401Google Scholar

    [17]

    Arceci L, Barbarino S, Fazio R, Santoro G E 2017 Phys. Rev. B 96 054301Google Scholar

    [18]

    Schollwöck U 2011 Ann. Phys. 326 96Google Scholar

    [19]

    Orús R 2014 Ann. Phys. 349 117Google Scholar

    [20]

    Strathearn A, Kirton P, Kilda D, Keeling J, Lovett B W 2018 Nat. Commun. 9 3322Google Scholar

    [21]

    Keldysh L V 1965 Sov. Phys. JETP 20 1018

    [22]

    Lifshitz E M, Pitaevskii L P 1981 Course of Theoretical Physics Volume 10: Physical Kinetics (Elsevier)

    [23]

    Kamenev A, Levchenko A 2009 Adv. Phys. 58 197Google Scholar

    [24]

    Wang J S, Agarwalla B K, Li H, Thingna J 2014 Front. Phys. 9 673

    [25]

    Chen R 2023 New J. Phys. 25 033035Google Scholar

    [26]

    Feynman R P, Vernon F L 1963 Ann. Phys. 24 118Google Scholar

    [27]

    Grabert H, Schramm P, Ingold G L 1988 Phys. Rep. 168 115Google Scholar

    [28]

    Negele J W, Orland H 1998 Quantum Many-Particle Systems (Colorado: Westview Press)

    [29]

    Trotter H F 1959 Proc. Amer. Math. Soc. 10 545Google Scholar

    [30]

    Suzuki M 1976 Commun. Math. Phys. 51 183Google Scholar

    [31]

    Makarov D E, Makri N 1993 Phys. Rev. A 48 3626Google Scholar

    [32]

    Makri N, Makarov D E 1995 J. Chem. Phys. 102 4600Google Scholar

    [33]

    Dattani N S, Pollock F A, Wilkins D M 2012 Quantum Phys. Lett. 1 35

    [34]

    Chen R, Xu X 2023 Eur. Phys. J. Plus 138 194Google Scholar

    [35]

    Verstraete F, García-Ripoll J J, Cirac J I 2004 Phys. Rev. Lett. 93 207204Google Scholar

    [36]

    Zwolak M, Vidal G 2004 Phys. Rev. Lett. 93 207205Google Scholar

    [37]

    Barthel T, Schollwöck U, White S R 2009 Phys. Rev. B 79 245101Google Scholar

    [38]

    Schollwöck U 2005 Rev. Mod. Phys. 77 259Google Scholar

    [39]

    Levin M, Nave C P 2007 Phys. Rev. Lett. 99 120601Google Scholar

    [40]

    Evenbly G, Vidal G 2015 Phys. Rev. Lett. 115 180405Google Scholar

    [41]

    Ran S J, Li W, Xi B, Zhang Z, Su G 2012 Phys. Rev. B 86 134429Google Scholar

    [42]

    Czarnik P, Cincio L, Dziarmaga J 2012 Phys. Rev. B 86 245101Google Scholar

    [43]

    Kshetrimayum A, Weimer H, Orús R 2017 Nat. Commun. 8 1291Google Scholar

    [44]

    Fishman M T, White S R 2015 Phys. Rev. B 92 075132Google Scholar

    [45]

    Dorda A, Ganahl M, Evertz H G, Linden W, Arrigoni E 2015 Phys. Rev. B 92 125145Google Scholar

    [46]

    Ganahl M, Aichhorn M, Evertz H G, Thunström P, Held K, Verstraete F 2015 Phys. Rev. B 92 155132Google Scholar

    [47]

    Wolf F A, Go A, McCulloch I P, Millis A J, Schollwöck U 2015 Phys. Rev. X 5 041032

    [48]

    Linden N O, Zingl M, Hubig C, Parcollet O, Schollwöck U 2020 Phys. Rev. B 101 041101Google Scholar

    [49]

    Kohn L, Santoro G E 2021 Phys. Rev. B 104 014303

    [50]

    Jørgensen M R, Pollock F A 2019 Phys. Rev. Lett. 123 240602Google Scholar

    [51]

    Carmichael H J 1999 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer-Verlag)

    [52]

    Gardiner C W, Zoller P 2004 Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Berlin: Springer-Verlag)

    [53]

    Jørgensen M R, Pollock F A 2020 Phys. Rev. A 102 052206Google Scholar

    [54]

    Cerrillo J, Cao J 2014 Phys. Rev. Lett. 112 110401Google Scholar

    [55]

    Popovic M, Mitchison M T, Strathearn A, Lovett B W, Goold J, Eastham P R 2021 PRX Quantum 2 020338Google Scholar

    [56]

    Fux G E, Butler E P, Eastham P R, Lovett B W, Keeling J 2021 Phys. Rev. Lett. 126 200401Google Scholar

    [57]

    Fux G E, Kilda D, Lovett B W, Keeling J 2022 10.48550/arXiv.2201.05529 [quant-ph]

    [58]

    Gribben D, Strathearn A, Fux G E, Kirton P, Lovett B W 2021 Quantum 6 847

    [59]

    Gribben D, Rouse D M, Iles-Smith J, Strathearn A, Maguire H, Kirton P, Nazir A, Gauger E M, Lovett B W 2022 PRX Quantum 3 010321Google Scholar

    [60]

    Ye E, Chan G K L 2021 J. Chem. Phys. 155 044104Google Scholar

    [61]

    Chiu Y F, Strathearn A, Keeling J 2022 Phys. Rev. A 106 012204Google Scholar

    [62]

    Otterpohl F, Nalbach P, Thorwart M 2022 Phys. Rev. Lett. 129 120406Google Scholar

    [63]

    Bose A 2022 Phys. Rev. B 105 024309

    [64]

    Florens S, Venturelli D, Narayanan R (edited by Chandra A K, Das A, Chakrabarti B K) 2010 Quantum Quenching, Annealing and Computation (Berlin, Heidelberg: Springer) p145

    [65]

    Hur K L (edited by Carr L D) 2010 Understanding Quantum Phase Transitions (New York: CRC Press) p217

    [66]

    Löfstedt R, Coppersmith S N 1994 Phys. Rev. Lett. 72 1947Google Scholar

    [67]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223Google Scholar

    [68]

    Grifoni M, Hänggi P 1998 Phys. Rep. 304 229Google Scholar

    [69]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [70]

    Brandes T, Aguado R, Platero G 2004 Phys. Rev. B 69 205326Google Scholar

    [71]

    Wang J S 2007 Phys. Rev. Lett. 99 160601Google Scholar

    [72]

    Segal D 2013 Phys. Rev. B 87 195436Google Scholar

    [73]

    Lü J T, Christensen R B, Wang J S, Hedegård P, Brandbyge M 2015 Phys. Rev. Lett. 114 096801Google Scholar

    [74]

    Ludovico M F, Lim J S, Moskalets M, Arrachea L, Sánchez D 2014 Phys. Rev. B 89 161306Google Scholar

    [75]

    Ludovico M, Arrachea L, Moskalets M, Sánchez D 2016 Entropy 18 419Google Scholar

    [76]

    Ludovico M F, Moskalets M, Sánchez D, Arrachea L 2016 Phys. Rev. B 94 035436Google Scholar

    [77]

    Ludovico M F, Arrachea L, Moskalets M, Sánchez D 2018 Phys. Rev. B 97 041416Google Scholar

  • [1] Jiang Shi-Min, Jia Xin-Yan, Fan Dai-He. Quantum non-local correlation testing of Werner state in non-Markovian environment. Acta Physica Sinica, 2024, 73(16): 160301. doi: 10.7498/aps.73.20240450
    [2] Du Xiao-Ying, Yu Zhen-Hua. Critical behaviors of Ising model in a fractal lattice. Acta Physica Sinica, 2023, 72(8): 080503. doi: 10.7498/aps.72.20222432
    [3] Song Feng-Feng, Zhang Guang-Ming. Phase transitions driven by topological excitations and their tensor network approach. Acta Physica Sinica, 2023, 72(23): 230301. doi: 10.7498/aps.72.20231152
    [4] Zhang Mao-Fang, You Hui-Min, Yin Xiang-Guo, Zhang Yun-Bo. Particle escape problem in semi-open system. Acta Physica Sinica, 2022, 71(16): 167302. doi: 10.7498/aps.71.20220450
    [5] He Zhi, Jiang Deng-Kui, Li Yan. Non-Markovian measure independent of initial states of open systems. Acta Physica Sinica, 2022, 71(21): 210303. doi: 10.7498/aps.71.20221053
    [6] Zhang Jin-Feng, Arapat Ablimit, Yang Fan, Akbar Hamutjan, Tang Shi-Sheng, Ahmad Abliz. Effects of Kaplan-Shekhtman-Entin-Wohlman-Aharony interaction on quantum discord of non-markovian dynamics under different magnetic fields. Acta Physica Sinica, 2021, 70(22): 223401. doi: 10.7498/aps.70.20211277
    [7] Chen Yu. Dissipative linear response theory and its appications in open quantum systems. Acta Physica Sinica, 2021, 70(23): 230306. doi: 10.7498/aps.70.20211687
    [8] Zhang Ke, Li Lan-Lan, Ren Gang, Du Jian-Ming, Fan Hong-Yi. Time evolution law of Wigner operator in diffusion channel. Acta Physica Sinica, 2020, 69(9): 090301. doi: 10.7498/aps.69.20200106
    [9] Wang Xiu-Juan, Li Sheng-Hao. Extracting Luttinger liquid parameter K based on U(1) symmetric infinite matrix product states. Acta Physica Sinica, 2019, 68(16): 160201. doi: 10.7498/aps.68.20190379
    [10] Li Xiao-Ke, Feng Wei. Quantum trajectory simulation for nonadiabatic molecular dynamics. Acta Physica Sinica, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [11] Liang Xiao, Qian Zhi-Hong, Tian Hong-Liang, Wang Xue. Markov decision model based handoff selection algorithm for heterogeneous wireless networks. Acta Physica Sinica, 2016, 65(23): 236402. doi: 10.7498/aps.65.236402
    [12] He Zhi, Li Li, Yao Chun-Mei, Li Yan. Non-Markovianity of open two-level system by means of quantum coherence. Acta Physica Sinica, 2015, 64(14): 140302. doi: 10.7498/aps.64.140302
    [13] You Bo, Cen Li-Xiang. Phenomena of limit cycle oscillations for non-Markovian dissipative systems undergoing long-time evolution. Acta Physica Sinica, 2015, 64(21): 210302. doi: 10.7498/aps.64.210302
    [14] Xie Wen-Xian, Xu Peng-Fei, Cai Li, Li Dong-Ping. Non-Markovian diffusion of the stochastic system with a biexponentical dissipative memory kernel. Acta Physica Sinica, 2013, 62(8): 080503. doi: 10.7498/aps.62.080503
    [15] Zhou Jun, Yuan Hao, Song Jun. The time evolution of relative density operator in phase diffusion channels. Acta Physica Sinica, 2012, 61(3): 030302. doi: 10.7498/aps.61.030302
    [16] Qian Jiang-Hai, Han Ding-Ding, Ma Yu-Gang. Dynamical evolution of complex airline system. Acta Physica Sinica, 2011, 60(9): 098901. doi: 10.7498/aps.60.098901
    [17] Zheng Li-Ming, Liu Song-Hao, Wang Fa-Qiang. Geometric phase evolution of atom under non-Markovian environment. Acta Physica Sinica, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [18] FAN XI-JUN, TIAN SHU-FEN, LI JIAN, LIU JIE, BAI CHENG-JIE. TIME EVOLUTION OF ATOMIC RESPONSE AND LIGHT AMPLIFICATION MECHANISM IN AN OPEN I NVERSIONLESS LASING SYSTEM. Acta Physica Sinica, 2000, 49(9): 1719-1725. doi: 10.7498/aps.49.1719
    [19] LIU TANG-KUN, WANG JI-SUO, LIU XIAO-JUN, ZHAN MING-SHENG. EVOLUTION OF DISTANCE BETWEEN DENSITY OPERATORS IN A NON-RESONANT INTERACTION SYSTEM. Acta Physica Sinica, 1999, 48(11): 2051-2059. doi: 10.7498/aps.48.2051
    [20] LIN DONG-HAI, WU QIN-YI. A NEW FORMALISM FOR DESCRIBING THE EVOLUTION OF DENSITY OPERATORS. Acta Physica Sinica, 1993, 42(6): 893-904. doi: 10.7498/aps.42.893
Metrics
  • Abstract views:  3659
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2022
  • Accepted Date:  04 April 2023
  • Available Online:  28 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回