Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mie scattering based on-line measurement of droplet from vacuum arc

Dong Pan Tian Chang Li Jie Wang Tao Yu Hai-Tao Su Ming-Xu He Jia-Long Shi Jin-Shui

Citation:

Mie scattering based on-line measurement of droplet from vacuum arc

Dong Pan, Tian Chang, Li Jie, Wang Tao, Yu Hai-Tao, Su Ming-Xu, He Jia-Long, Shi Jin-Shui
PDF
HTML
Get Citation
  • Metal droplet is produced accompanied with vacuum arc discharge, which is important to the research of cathode spot and the application of vacuum arc. The droplet comes from the cathode spot crater and can reflect the physical process of the cathode spot. However, it will destroy the uniformity of surface deposition in engineering and should be avoided as much as possible. The measurement of metal droplet usually adopts off-line collector, which cannot obtain the signal of the whole space and singe arc. In order to on-line measure the droplet, a new method by the Mie scattering is developed in this work, and its feasibility is investigated. The characteristic of the scattering light of titanium droplet is computed by the simulation code. The results indicate that the scattering light beams of the small droplet are distributed at all angles. With the increase of the diameter, the scattered light beams are more and more concentrated in the forward direction, which allows the inversion of the signals of the droplets with different diameters. Then the detector is designed with different annuluses. When the detector is divided into 35 annuluses, the light energy coefficient matrix is easy to solve and the measurement system has a good resolution. The experimental setup is built and the preliminary experiment is carried out. The results indicate that the diameters of titanium droplets are mainly around 9.8 μm, which verifies the effectiveness of the Mie scattering method of measuring vacuum arc droplets. However, the small droplet information is not detected, so the droplet diameter distribution is quite different from the off-line measurement. The reason is that the signal-to-noise ratio of the measurement system is poor, thereby leading the scattered signals of the small droplet to fail to be obtained effectively. The experimental setup need to be further optimized.
      Corresponding author: Li Jie, nlijie@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11735012, 11975217).
    [1]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061Google Scholar

    [2]

    Anders A 2008 Cathodic Arcs (New York: Springer Science+ Business Media) p7

    [3]

    Ge G W, Cheng X, Liao M F, Duan X Y, Zou J Y 2018 IEEE Trans. Plasma Sci. 46 1003Google Scholar

    [4]

    Boudot C, Kuhn M, Kauffeldt K M, Schein J 2017 Mater. Sci. Eng., C 74 508Google Scholar

    [5]

    Liu F X, Long J D, Zheng L, Dong P, Li C, Chen W 2018 Plasma Sources Sci. Technol. 27 025001Google Scholar

    [6]

    李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔 2022 物理学报 71 042901Google Scholar

    Li J, Zheng L, Dong P, Long J D, Wang T, Liu F X 2022 Acta Phys. Sin. 71 042901Google Scholar

    [7]

    G. A. 米夏兹著 (李国政译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第202—204页

    Mesyats G A (translated by Li G Z) 2007 Vacuum discharge physics and high power pulse technology (Beijing: National Defense Industry Press) pp202–204 (in Chinese)

    [8]

    Kaufmann H T C, Cunha M D, Benilov M S, Hartmann W, Wenzel N 2017 J. Appl. Phys. 122 163303Google Scholar

    [9]

    董攀, 李杰, 郑乐, 刘飞翔, 龙继东, 石金水 2018 强激光与粒子束 30 014001

    Dong P, Li J, Zheng L, Liu F X, Long J D, Shi J S 2018 High Power Laser Part. Beam 30 014001

    [10]

    吴先映, 廖斌, 张旭, 李强, 彭建华, 张荟星, 张孝吉 2014 北京师范大学学报(自然科学版) 50 132

    Wu X Y, Liao B, Zhang X, Li Q, Peng J H, Zhang H X, Zhang X J 2014 J. Beijing Normal Univ. (Nat. Sci. Ed.) 50 132

    [11]

    Lee W Y, Jang Y J, Tokoroyama T, Murashima M, Umehara N 2020 Diamond Relat. Mater. 105 107789Google Scholar

    [12]

    Anders S, Anders A, Yu K M, Yao X Y, Brown I G 1993 IEEE Trans. Plasma Sci. 21 440Google Scholar

    [13]

    Daalder J E 1976 J. Phys. D:Appl. Phys. 9 2379Google Scholar

    [14]

    Proskurovsky D I, Popov S A, Kozyrev A V, Pryadko E L, Batrakov A V, Shishkov A N 2007 IEEE Trans. Plasma Sci. 35 980Google Scholar

    [15]

    Siemroth P, Laux M, Pursch H, Sachtleben J, Balden M, Rohde V, Neu R 2018 28 th International Symposium on Discharges and Electrical Insulation in Vacuum Greifswald, Germany, September 23–28, 2018 p325

    [16]

    Mesyats G A, Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2241Google Scholar

    [17]

    Zhang X, Wang L J, Ma J W, Wang Y, Jia S L 2019 J. Phys. D:Appl. Phys. 52 035204Google Scholar

    [18]

    Wang L J, Zhang X, Li J G, Luo M, Jia S L 2021 J. Phys. D:Appl. Phys. 54 215202Google Scholar

    [19]

    Takamune M, Sasaki S, Kondo D, Naoi J, Kumakura M, Ashida M, Moriwaki Y 2022 Appl. Phys. Express 15 012007Google Scholar

    [20]

    Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D, Schauerat M M 2015 J. Appl. Phys. 117 223105Google Scholar

    [21]

    Hudgins D, Gambino N, Rollinger B, Abhari R 2016 J. Phys. D:Appl. Phys. 49 185205Google Scholar

    [22]

    陈哲敏, 胡朋兵, 孟庆强 2015 光散射学报 27 54

    Chen Z M, Hu P B, Meng Q Q 2015 The Journal of Light Scattering 27 54

    [23]

    Zhang H, Liang Y, Chen J G, Peng H T 2021 Opt. Lasers Eng. 144 106642Google Scholar

    [24]

    蔡小舒, 苏明旭, 沈建琪著 2010 颗粒粒度测量技术及应用 (北京: 化学工业出版社) 第32页

    Cai X S, Su M X, Shen J Q 2010 Particle size Measurement Technology and Application (Beijing: Chemical Industry Press) p32

    [25]

    Johnson P, Christy R 1974 Phys. Rev. B 9 5056Google Scholar

    [26]

    Hirofumi T, Koji S, Tateki S 1998 Thin Solid Films 316 73Google Scholar

  • 图 1  Mie散射原理示意图

    Figure 1.  Schematic diagram of Mie scattering.

    图 2  不同直径Ti液滴散射光强分布矢极图 (a) 0.1 μm; (b) 0.5 μm; (c) 1.0 μm; (d) 2.0 μm; (e) 4.0 μm; (f) 8.0 μm

    Figure 2.  Sagittal distribution of the scattered light intensity of Ti droplet: (a) 0.1 μm; (b) 0.5 μm; (c) 1.0 μm; (d) 2.0 μm; (e) 4.0 μm; (f) 8.0 μm.

    图 3  Ti液滴相对散射光强分布曲线图

    Figure 3.  Distribution of the relative scattered light intensity of Ti droplet.

    图 4  Mie散射法测试液滴实验布局

    Figure 4.  The measurement layout of droplet by Mie scattering.

    图 5  Ti液滴在探测器不同环上的光能分布

    Figure 5.  Light energy distribution of Ti droplet on different annulus of detector.

    图 6  弧流为100 A (a) 无金属Ti液滴的背景信号; (b) 有金属Ti液滴的散射信号

    Figure 6.  When arc current is 100 A: (a) Background signal without Ti droplet; (b) scattering signal with Ti droplet.

    图 7  (a) 散射光能分布; (b) Ti液滴直径分布

    Figure 7.  (a) Scattering light energy distribution; (b) Ti droplet diameter distribution.

    表 1  CCD光环设计尺寸

    Table 1.  Design size of CCD annulus.

    环数内环/mm外环/mm环数内环/mm外环/mm环数内环/mm外环/mm
    10.1050.117130.3730.414251.3211.468
    20.1170.13140.4140.461261.4681.631
    30.130.144150.4610.512271.6311.812
    40.1440.161160.5120.569281.8122.014
    50.1610.178170.5690.632292.0142.238
    60.1780.198180.6320.702302.2382.486
    70.1980.22190.7020.78312.4862.763
    80.220.245200.780.867322.7633.07
    90.2450.272210.8670.963333.073.411
    100.2720.302220.9631.07343.4113.79
    110.3020.336231.071.189353.794.212
    120.3360.373241.1891.321
    DownLoad: CSV

    表 2  标准颗粒粒径测量结果对比表

    Table 2.  Comparision results of standard particle between measurement and nominal diameter.

    标称粒径/μm测量粒径/μm相对误差/%
    0.70.657
    2.62.693
    5.45.756
    9.48.885
    15.015.202
    DownLoad: CSV
  • [1]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061Google Scholar

    [2]

    Anders A 2008 Cathodic Arcs (New York: Springer Science+ Business Media) p7

    [3]

    Ge G W, Cheng X, Liao M F, Duan X Y, Zou J Y 2018 IEEE Trans. Plasma Sci. 46 1003Google Scholar

    [4]

    Boudot C, Kuhn M, Kauffeldt K M, Schein J 2017 Mater. Sci. Eng., C 74 508Google Scholar

    [5]

    Liu F X, Long J D, Zheng L, Dong P, Li C, Chen W 2018 Plasma Sources Sci. Technol. 27 025001Google Scholar

    [6]

    李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔 2022 物理学报 71 042901Google Scholar

    Li J, Zheng L, Dong P, Long J D, Wang T, Liu F X 2022 Acta Phys. Sin. 71 042901Google Scholar

    [7]

    G. A. 米夏兹著 (李国政译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第202—204页

    Mesyats G A (translated by Li G Z) 2007 Vacuum discharge physics and high power pulse technology (Beijing: National Defense Industry Press) pp202–204 (in Chinese)

    [8]

    Kaufmann H T C, Cunha M D, Benilov M S, Hartmann W, Wenzel N 2017 J. Appl. Phys. 122 163303Google Scholar

    [9]

    董攀, 李杰, 郑乐, 刘飞翔, 龙继东, 石金水 2018 强激光与粒子束 30 014001

    Dong P, Li J, Zheng L, Liu F X, Long J D, Shi J S 2018 High Power Laser Part. Beam 30 014001

    [10]

    吴先映, 廖斌, 张旭, 李强, 彭建华, 张荟星, 张孝吉 2014 北京师范大学学报(自然科学版) 50 132

    Wu X Y, Liao B, Zhang X, Li Q, Peng J H, Zhang H X, Zhang X J 2014 J. Beijing Normal Univ. (Nat. Sci. Ed.) 50 132

    [11]

    Lee W Y, Jang Y J, Tokoroyama T, Murashima M, Umehara N 2020 Diamond Relat. Mater. 105 107789Google Scholar

    [12]

    Anders S, Anders A, Yu K M, Yao X Y, Brown I G 1993 IEEE Trans. Plasma Sci. 21 440Google Scholar

    [13]

    Daalder J E 1976 J. Phys. D:Appl. Phys. 9 2379Google Scholar

    [14]

    Proskurovsky D I, Popov S A, Kozyrev A V, Pryadko E L, Batrakov A V, Shishkov A N 2007 IEEE Trans. Plasma Sci. 35 980Google Scholar

    [15]

    Siemroth P, Laux M, Pursch H, Sachtleben J, Balden M, Rohde V, Neu R 2018 28 th International Symposium on Discharges and Electrical Insulation in Vacuum Greifswald, Germany, September 23–28, 2018 p325

    [16]

    Mesyats G A, Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2241Google Scholar

    [17]

    Zhang X, Wang L J, Ma J W, Wang Y, Jia S L 2019 J. Phys. D:Appl. Phys. 52 035204Google Scholar

    [18]

    Wang L J, Zhang X, Li J G, Luo M, Jia S L 2021 J. Phys. D:Appl. Phys. 54 215202Google Scholar

    [19]

    Takamune M, Sasaki S, Kondo D, Naoi J, Kumakura M, Ashida M, Moriwaki Y 2022 Appl. Phys. Express 15 012007Google Scholar

    [20]

    Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D, Schauerat M M 2015 J. Appl. Phys. 117 223105Google Scholar

    [21]

    Hudgins D, Gambino N, Rollinger B, Abhari R 2016 J. Phys. D:Appl. Phys. 49 185205Google Scholar

    [22]

    陈哲敏, 胡朋兵, 孟庆强 2015 光散射学报 27 54

    Chen Z M, Hu P B, Meng Q Q 2015 The Journal of Light Scattering 27 54

    [23]

    Zhang H, Liang Y, Chen J G, Peng H T 2021 Opt. Lasers Eng. 144 106642Google Scholar

    [24]

    蔡小舒, 苏明旭, 沈建琪著 2010 颗粒粒度测量技术及应用 (北京: 化学工业出版社) 第32页

    Cai X S, Su M X, Shen J Q 2010 Particle size Measurement Technology and Application (Beijing: Chemical Industry Press) p32

    [25]

    Johnson P, Christy R 1974 Phys. Rev. B 9 5056Google Scholar

    [26]

    Hirofumi T, Koji S, Tateki S 1998 Thin Solid Films 316 73Google Scholar

  • [1] Liu He, Yang Ya-Jing, Tang Yu-Ning, Wei Yan-Ju. Dynamics of acoustically-induced droplet instability. Acta Physica Sinica, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] Peng Jia-Lue, Guo Hao, You Tian-Ya, Ji Xian-Bing, Xu Jin-Liang. Behavioral characteristics of droplet collision on Janus particle spheres. Acta Physica Sinica, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [3] Jiang Wei, Jiang Hao-Yu, Yi Han, Fan Rui-Rui, Cui Zeng-Qi, Sun Kang, Zhang Guo-Hui, Tang Jing-Yu, Sun Zhi-Jia, Ning Chang-Jun, Gao Ke-Qing, An Qi, Bai Huai-Yong, Bao Jie, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yong-Hao, Chen Yu-Kai, Chen Zhen, Feng Chang-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Luan Guang-Yuan, Mu Qi-Li, Qi Bin-Bin, Ren Jie, Ren Zhi-Zhou, Ruan Xi-Chao, Song Zhao-Hui, Song Ying-Peng, Sun Hong, Sun Xiao-Yang, Tan Zhi-Xin, Tang Hong-Qing, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wang Zhao-Hui, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Lin-Hao, Zhang Qi-Wei, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, The CSNS Back-n Collaboration  . Detector calibration based on secondary protons of Back-n white neutron source. Acta Physica Sinica, 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [4] Tang Peng-Bo, Wang Guan-Qing, Wang Lu, Shi Zhong-Yu, Li Yuan, Xu Jiang-Rong. Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere. Acta Physica Sinica, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [5] Wei Yan-Ju, Zhang Jie, Deng Sheng-Cai, Zhang Ya-Jie, Yang Ya-Jing, Liu Sheng-Hua, Chen Hao. Phenomenon study on heat induced atomization of acoustic levitated methanol droplet. Acta Physica Sinica, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] Fan Zeng-Hua, Rong Wei-Bin, Liu Zi-Xiao, Gao Jun, Tian Ye-Bing. Migration characteristics of droplet condensation on end surface of single-finger microgripper. Acta Physica Sinica, 2020, 69(18): 186801. doi: 10.7498/aps.69.20200463
    [7] Kang Jian-Bin, Li Qian, Li Mo. Effects of material structure on device efficiency of III-nitride intersubband photodetectors. Acta Physica Sinica, 2019, 68(22): 228501. doi: 10.7498/aps.68.20190722
    [8] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [9] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [10] Hu Hai-Fan, Wang Ying, Chen Jie, Zhao Shi-Bin. Full three-dimensional simulations of optimized active pixel detector for ionizing particle detection. Acta Physica Sinica, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [11] Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling. Ring deposition of drying suspension droplets. Acta Physica Sinica, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [12] Bi Fei-Fei, Guo Ya-Li, Shen Sheng-Qiang, Chen Jue-Xian, Li Yi-Qiao. Experimental study of spread characteristics of droplet impacting solid surface. Acta Physica Sinica, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [13] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [14] Zhang Ming-kun, Chen Shuo, Shang Zhi. Numerical simulation of a droplet motion in a grooved microchannel. Acta Physica Sinica, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [15] Wang Guang-Qiang, Wang Jian-Guo, Tong Chang-Jiang, Li Xiao-Ze, Wang Xue-Feng. Analysis and design of semiconductor detector for high-power terahertz pulse. Acta Physica Sinica, 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [16] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [17] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] Guo Jia-Hong, Dai Shi-Qiang, Dai Qin. Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [19] Hou Li-Fei, Li Fang, Yuan Yong-Teng, Yang Guo-Hong, Liu Shen-Ye. Chemical vapor deposited diamond detectors for soft X-ray power measurement. Acta Physica Sinica, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [20] Liu Xiao-Dong, Li Shu-Guang, Hou Lan-Tian, Wang Hui-Tian. . Acta Physica Sinica, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
Metrics
  • Abstract views:  3376
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2022
  • Accepted Date:  06 February 2023
  • Available Online:  28 February 2023
  • Published Online:  20 April 2023

/

返回文章
返回