Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nucleus density based new relationship of nuclear charge radius

Jiao Bao-Bao

Citation:

Nucleus density based new relationship of nuclear charge radius

Jiao Bao-Bao
PDF
HTML
Get Citation
  • In this paper we predict and evaluate the value of the nuclear charge radius by analyzing the relationship between nuclear mass and nuclear charge radius.We obtain 884 nuclei (Z, N ≥ 8) with known mass and known charge radii by combining AME2020 database with CR2013 database, and calculate the mass densities $ \rho_\text{m} $ of the 884 nuclei. We aim to obtain an empirical formula of one constant which is useful in describing and predicting nuclear charge radius. With the empirical formula and the AME2020 database, the root-mean-square deviation (RMSD) of the nuclear charge radius of $ \sigma = 0.093 $ fm is successfully obtained.Considering the influence of neutron numbers on $\rho_{\rm{m}}$, we use the neutron factor ${1}/{N} $ to correct the empirical formula, and the RMSD is reduced to σ = 0.047 fm (the accuracy is increased by about 50%). The second correction is shell effect of neutrons. The results show that the RMSD of nuclear charge radius is reduced to 0.034 fm based on shell effect of neutrons. We use the empirical formula with corrections to predict the nuclear charge radius (1573 nuclear charge radius with Z, N ≥ 8) which is difficult to measure experimentally. The difference between our predicted values based on AME2020 database and the experimental values measured in recent years is in the allowable range of deviation. The result shows that the new relation for nuclear charge radius is simple and reliable. In addition, the RMSD of the calculation value for 791 nuclei is reduced to σ = 0.032 fm after we have removed some nuclei with special shell effect and isotope chains. These results show that the new relation proposed in this paper can be comparable to $ A^{1/3} $ and $ Z^{1/3} $ formulas with corrections.Moreover, we study the 884 and 791 nuclear mass densities by using L-M neural network method to build description and prediction models. Comparing with CR2013, the RMSDs of nuclear charge radius are σ = 0.018 fm and σ = 0.014 fm, respectively. The RMSDs are reduced by about 50% compared with that from the empirical formula with corrections, and the predicted values are closer to the experimental values measured in recent years.
      Corresponding author: Jiao Bao-Bao, baobaojiao91@126.com
    • Funds: Project supported by the Open Funds of Engineering Research Center of Nuclear Technology Application, Ministry of Education, China (Grant No. HJSJYB2022-9), the Science and Technology Research Program of the Education Department of Jiangxi Province, China (Grant No. GJJ2200782), the Experimental Technology Development Program of East China University of Technology (Grant No. DHSY-202251), and the Doctoral Scientific Research Foundation of East China University of Technology (Grant No. DHBK2019151)
    [1]

    Campbell P, Moore I D, Pearson M R 2016 Prog. Part. Nucl. Phys. 86 127Google Scholar

    [2]

    Cheal B, Flanagan K T 2010 J. Phys. G: Nucl. Par. 37 113101Google Scholar

    [3]

    Blaum K, Dilling J, Nötershäser M 2013 Phys. Scr. T152 014017Google Scholar

    [4]

    Angeli I, Marinova K P 2013 At. Data Nucl. Data Tables 99 69Google Scholar

    [5]

    Marinova K P, Angeli I https://www-nds.iaea.org/radii/.

    [6]

    Angeli I 2004 At. Data Nucl. Data Tables 87 185Google Scholar

    [7]

    Angeli I 1999 International Nuclear Data Commitee online: http://iaeand.iaea.or.at/indcsel.html.

    [8]

    De Groote R P, Billowes J, Binnersley C L, et al. 2020 Nat. Phys. 16 620Google Scholar

    [9]

    Koszorús Á, Yang X F, Jiang W G, et al. 2021 Nat. Phys. 17 439Google Scholar

    [10]

    Bissell M L, Carette T, Flanagan K T, et al. 2016 Phys. Rev. C 93 064318Google Scholar

    [11]

    Xie L, Yang X F, Wraith C, et al. 2019 Phys. Lett. B 797 134805Google Scholar

    [12]

    Nerlo-Pomorska B, Pomorski K 1993 Z. Phys. A 344 359Google Scholar

    [13]

    Nerlo-Pomorska B, Pomorski K 1994 Z. Phys. A 348 169Google Scholar

    [14]

    圣宗强, 樊广伟, 钱建发 2015 物理学报 64 112101Google Scholar

    Sheng Z Q, Fan G W, Qian J F 2015 Acta Phys. Sin. 64 112101Google Scholar

    [15]

    曹颖逾, 郭建友 2020 物理学报 69 162101Google Scholar

    Cao Y Y, Guo J Y 2020 Acta Phys. Sin. 69 162101Google Scholar

    [16]

    Goriely S, Chamel N, Pearson J M 2016 Phys. Rev. C 93 034337Google Scholar

    [17]

    Zhao P W, Li Z P, Yao J M, Meng J 2010 Phys. Rev. C 82 054319Google Scholar

    [18]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121-122 1Google Scholar

    [19]

    Iimura H, Buchinger F 2008 Phys. Rev. C 78 067301Google Scholar

    [20]

    Buchinger F, Pearson J M 2005 Phys. Rev. C 72 057305Google Scholar

    [21]

    Dieperink A E L, Van Isacker P 2009 Eur. Phys. J. A 42 269Google Scholar

    [22]

    Wang N, Li T 2013 Phys. Rev. C 88 011301RGoogle Scholar

    [23]

    Stoitsov M V, Dobaczewski J, Nazarewicz W, et al. 2003 Phys. Rev. C 68 054312Google Scholar

    [24]

    Goriely S, Chamel N, Pearson J M 2010 Phys. Rev. C 82 035804Google Scholar

    [25]

    Bao M, Zong Y Y, Zhao Y M, Arima A 2020 Phys. Rev. C 102 014306Google Scholar

    [26]

    Garvey G T, Gerace W J, Jaffe R L, Talmi I, Kelson I 1969 Rev. Mod. Phys. 41 S1Google Scholar

    [27]

    Sun B H, Lu Y, Peng J P, Liu C Y, Zhao Y M 2014 Phys. Rev. C 90 054318Google Scholar

    [28]

    Bao M, Lu Y, Zhao Y M, Arima A 2016 Phys. Rev. C 94 064315Google Scholar

    [29]

    焦宝宝 2022 物理学报 71 152101Google Scholar

    Jiao B B 2022 Acta Phys. Sin. 71 152101Google Scholar

    [30]

    Ma C, Zong Y Y, Zhao Y M, Arima A 2021 Phys. Rev. C 104 014303Google Scholar

    [31]

    Von Weizsäcker C F 1935 Z. Phys 96 431Google Scholar

    [32]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501Google Scholar

    [33]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [34]

    Goriely S, Chamel N, Pearson J M 2009 Phys. Rev. Lett. 102 152503Google Scholar

    [35]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23Google Scholar

    [36]

    Qi C 2015 J. Phys. G: Nucl. Par. 42 045104Google Scholar

    [37]

    Wang N, Liang Z, Liu M, et al. 2010 Phys. Rev. C 82 044304Google Scholar

    [38]

    Garvey G T, Kelson I 1966 Phys. Rev. Lett. 16 197Google Scholar

    [39]

    Fu G J, Lei Y, Jiang H, Zhao Y M, et al. 2011 Phys. Rev. C 84 034311Google Scholar

    [40]

    Jiang H, Fu G J, Zhao Y M, et al. 2010 Phys. Rev. C 82 054317Google Scholar

    [41]

    Jiao B B 2018 Mod. Phys. Lett. A 33 1850156Google Scholar

    [42]

    Jiao B B 2020 Int. J. Mod. Phys. E 29 2050024Google Scholar

    [43]

    Yang G L, Qi B, Wang X D, Qi C 2022 Phys. Rev. C 106 024325Google Scholar

    [44]

    Utama R, Piekarewicz J 2017 Phys. Rev. C 96 044308Google Scholar

    [45]

    Utama R, Piekarewicz J 2018 Phys. Rev. C 97 014306Google Scholar

    [46]

    Zhang H F, Wang L H, Yin J P, Chen P H, Zhang H F 2017 J. Phys. G: Nucl. Par. 44 045110Google Scholar

    [47]

    Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303Google Scholar

    [48]

    Shang T S, Li J, Niu Z M 2022 Nucl. Sci. Tech. 33 153Google Scholar

    [49]

    Z M Niu and H Z Liang 2018 Phys. Lett. B 778 48Google Scholar

    [50]

    Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304Google Scholar

    [51]

    Audi G, Kondev F G, Wang M, Huang W J, Naimi S 2017 Chin. Phys. C 41 030001Google Scholar

    [52]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [53]

    卢希庭, 江栋兴, 叶沿林 2000 原子核物理 (北京: 原子能出版社) 第7—9 页

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp7–9 (in Chinese)

    [54]

    Fu G J, Bao M, He Z, Jiang H, Zhao Y M, Arima A 2012 Phys. Rev. C 86 054303

  • 图 1  884个原子核密度$ \rho_\text{m} $

    Figure 1.  The $ \rho_\text{m} $ of 884 nuclei.

    图 2  884个原子核密度 (绿色折线表示的是原子核密度平均值线, 黑色光滑曲线是基于(6)式得到的拟合线, 粉色竖线分别表示中子数 N = 20, 28, 50, 82 和126的位置)

    Figure 2.  The green zigzag line is plotted by using the average values of $ \rho_\text{m} $ for nuclei with the same mass number N. The black curve is plotted in terms of empirical formula Eq. (6). The vertical lines are plotted at the major neutron closure N = 20, 28, 50, 82 126.

    图 3  从上到下依次为884个核电荷半径的实验值与(2)式、(6)式、(7)式理论计算值的差值. 粉色竖直虚线分别表示中子数 N = 20, 28, 50, 82 和126的位置

    Figure 3.  The difference between the experimental value of 884 nuclear charge radii and the theoretical value calculated by Eq.(2),Eq.(6) and Eq.(7), respectively. A dash vertical line is plotted at the major neutron closure N = 20, 28, 50, 82 and 126.

    图 4  核电荷半径的计算值与CR2013数据库中实验值之间的误差. 粉色竖直虚线分别表示中子数 N = 20, 28, 50, 82 和126的位置, 黑色横虚线分别表示质子数 Z = 20, 28, 50 和 82 的位置 (单位: fm)

    Figure 4.  The difference between the calculated values of nuclear charge radius and experimental values in the CR2013 database. A dash vertical line is plotted at the major neutron closure N = 20, 28, 50, 82 and 126. The dash horizontal line is plotted at the major proton closure Z = 20, 28, 50 and 82 (in units of fm).

    图 5  (a) 和 (b)分别表示 Eu, Gd, Tb, Dy 同位素链核电荷半径与核质量的实验值; (c) 和 (d)分别表示Tm, Yb, Lu, Hf同位素链核电荷半径与核质量的实验值

    Figure 5.  (a) and (b) represent the nuclear charge radii and nuclear mass of Eu, Gd, Tb, Dy elements, respectively; (c) and (d) represent the nuclear charge radii and nuclear mass of Tm, Yb, Lu, Hf elements, respectively.

    图 6  基于神经网络模型I和II得到的核电荷半径计算值与实验值之间的差值 (单位: fm)

    Figure 6.  The difference between the calculated values of nuclear charge radius (obtained by neural network model I and II) and experimental values in CR2013 database (in units of fm).

    图 7  利用不同模型结合CR2013数据库预得到的预言值与近几年测得的实验值$ ^{37}\text{K} $[9], $ ^{48}\text{K} $[9], $ ^{64}\text{Cu} $[8,10], $ ^{65}\text{Zn} $[11], $ ^{69}\text{Zn} $[11]之间的差值

    Figure 7.  The difference between the predicted values of nuclear charge radius (obtained by the CR2013 database) and experimental values $ ^{37}\text{K} $[9], $ ^{48}\text{K} $[9], $ ^{64}\text{Cu} $[8,10], $ ^{65}\text{Zn} $[11], $ ^{69}\text{Zn} $[11] in recent years.

    表 1  不同壳层范围的拟合参数 (单位: u/fm3)

    Table 1.  The parameter of different shell regions (in units of u/fm3).

    Region $C_n$ $\delta1$ $a_n$ $\delta2$
    8 ≤ N ≤ 20 0.276 0.010 –0.828 0.153
    21 ≤ N ≤ 28 0.363 0.007 –2.86 0.171
    29 ≤ N ≤ 39 0.206 0.007 1.649 0.256
    40 ≤ N ≤ 50 0.383 0.005 –5.387 0.217
    51 ≤ N ≤ 66 0.242 0.005 1.812 0.316
    67 ≤ N ≤ 82 0.345 0.007 –4.754 0.557
    83 ≤ N ≤ 104 0.227 0.006 4.774 0.573
    105 ≤ N ≤ 126 0.371 0.003 –9.614 0.433
    127 ≤ N 0.230 0.003 8.088 0.516
    DownLoad: CSV
  • [1]

    Campbell P, Moore I D, Pearson M R 2016 Prog. Part. Nucl. Phys. 86 127Google Scholar

    [2]

    Cheal B, Flanagan K T 2010 J. Phys. G: Nucl. Par. 37 113101Google Scholar

    [3]

    Blaum K, Dilling J, Nötershäser M 2013 Phys. Scr. T152 014017Google Scholar

    [4]

    Angeli I, Marinova K P 2013 At. Data Nucl. Data Tables 99 69Google Scholar

    [5]

    Marinova K P, Angeli I https://www-nds.iaea.org/radii/.

    [6]

    Angeli I 2004 At. Data Nucl. Data Tables 87 185Google Scholar

    [7]

    Angeli I 1999 International Nuclear Data Commitee online: http://iaeand.iaea.or.at/indcsel.html.

    [8]

    De Groote R P, Billowes J, Binnersley C L, et al. 2020 Nat. Phys. 16 620Google Scholar

    [9]

    Koszorús Á, Yang X F, Jiang W G, et al. 2021 Nat. Phys. 17 439Google Scholar

    [10]

    Bissell M L, Carette T, Flanagan K T, et al. 2016 Phys. Rev. C 93 064318Google Scholar

    [11]

    Xie L, Yang X F, Wraith C, et al. 2019 Phys. Lett. B 797 134805Google Scholar

    [12]

    Nerlo-Pomorska B, Pomorski K 1993 Z. Phys. A 344 359Google Scholar

    [13]

    Nerlo-Pomorska B, Pomorski K 1994 Z. Phys. A 348 169Google Scholar

    [14]

    圣宗强, 樊广伟, 钱建发 2015 物理学报 64 112101Google Scholar

    Sheng Z Q, Fan G W, Qian J F 2015 Acta Phys. Sin. 64 112101Google Scholar

    [15]

    曹颖逾, 郭建友 2020 物理学报 69 162101Google Scholar

    Cao Y Y, Guo J Y 2020 Acta Phys. Sin. 69 162101Google Scholar

    [16]

    Goriely S, Chamel N, Pearson J M 2016 Phys. Rev. C 93 034337Google Scholar

    [17]

    Zhao P W, Li Z P, Yao J M, Meng J 2010 Phys. Rev. C 82 054319Google Scholar

    [18]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121-122 1Google Scholar

    [19]

    Iimura H, Buchinger F 2008 Phys. Rev. C 78 067301Google Scholar

    [20]

    Buchinger F, Pearson J M 2005 Phys. Rev. C 72 057305Google Scholar

    [21]

    Dieperink A E L, Van Isacker P 2009 Eur. Phys. J. A 42 269Google Scholar

    [22]

    Wang N, Li T 2013 Phys. Rev. C 88 011301RGoogle Scholar

    [23]

    Stoitsov M V, Dobaczewski J, Nazarewicz W, et al. 2003 Phys. Rev. C 68 054312Google Scholar

    [24]

    Goriely S, Chamel N, Pearson J M 2010 Phys. Rev. C 82 035804Google Scholar

    [25]

    Bao M, Zong Y Y, Zhao Y M, Arima A 2020 Phys. Rev. C 102 014306Google Scholar

    [26]

    Garvey G T, Gerace W J, Jaffe R L, Talmi I, Kelson I 1969 Rev. Mod. Phys. 41 S1Google Scholar

    [27]

    Sun B H, Lu Y, Peng J P, Liu C Y, Zhao Y M 2014 Phys. Rev. C 90 054318Google Scholar

    [28]

    Bao M, Lu Y, Zhao Y M, Arima A 2016 Phys. Rev. C 94 064315Google Scholar

    [29]

    焦宝宝 2022 物理学报 71 152101Google Scholar

    Jiao B B 2022 Acta Phys. Sin. 71 152101Google Scholar

    [30]

    Ma C, Zong Y Y, Zhao Y M, Arima A 2021 Phys. Rev. C 104 014303Google Scholar

    [31]

    Von Weizsäcker C F 1935 Z. Phys 96 431Google Scholar

    [32]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501Google Scholar

    [33]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [34]

    Goriely S, Chamel N, Pearson J M 2009 Phys. Rev. Lett. 102 152503Google Scholar

    [35]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23Google Scholar

    [36]

    Qi C 2015 J. Phys. G: Nucl. Par. 42 045104Google Scholar

    [37]

    Wang N, Liang Z, Liu M, et al. 2010 Phys. Rev. C 82 044304Google Scholar

    [38]

    Garvey G T, Kelson I 1966 Phys. Rev. Lett. 16 197Google Scholar

    [39]

    Fu G J, Lei Y, Jiang H, Zhao Y M, et al. 2011 Phys. Rev. C 84 034311Google Scholar

    [40]

    Jiang H, Fu G J, Zhao Y M, et al. 2010 Phys. Rev. C 82 054317Google Scholar

    [41]

    Jiao B B 2018 Mod. Phys. Lett. A 33 1850156Google Scholar

    [42]

    Jiao B B 2020 Int. J. Mod. Phys. E 29 2050024Google Scholar

    [43]

    Yang G L, Qi B, Wang X D, Qi C 2022 Phys. Rev. C 106 024325Google Scholar

    [44]

    Utama R, Piekarewicz J 2017 Phys. Rev. C 96 044308Google Scholar

    [45]

    Utama R, Piekarewicz J 2018 Phys. Rev. C 97 014306Google Scholar

    [46]

    Zhang H F, Wang L H, Yin J P, Chen P H, Zhang H F 2017 J. Phys. G: Nucl. Par. 44 045110Google Scholar

    [47]

    Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303Google Scholar

    [48]

    Shang T S, Li J, Niu Z M 2022 Nucl. Sci. Tech. 33 153Google Scholar

    [49]

    Z M Niu and H Z Liang 2018 Phys. Lett. B 778 48Google Scholar

    [50]

    Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304Google Scholar

    [51]

    Audi G, Kondev F G, Wang M, Huang W J, Naimi S 2017 Chin. Phys. C 41 030001Google Scholar

    [52]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [53]

    卢希庭, 江栋兴, 叶沿林 2000 原子核物理 (北京: 原子能出版社) 第7—9 页

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp7–9 (in Chinese)

    [54]

    Fu G J, Bao M, He Z, Jiang H, Zhao Y M, Arima A 2012 Phys. Rev. C 86 054303

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [3] Yang Ying, Cao Huai-Xin. Two types of neural network representations of quantum mixed states. Acta Physica Sinica, 2023, 72(11): 110301. doi: 10.7498/aps.72.20221905
    [4] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [5] Jiao Bao-Bao. New relation for nuclear charge radius based on isotope chain. Acta Physica Sinica, 2022, 71(15): 152101. doi: 10.7498/aps.71.20212343
    [6] Li Jing, Sun Hao. Tag Z boson jets via convolutional neural networks. Acta Physica Sinica, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [7] Cao Ying-Yu, Guo Jian-You. Study of nuclear charge radius. Acta Physica Sinica, 2020, 69(16): 162101. doi: 10.7498/aps.69.20191643
    [8] Sun Li-Wang, Li Hong, Wang Peng-Jun, Gao He-Bei, Luo Meng-Bo. Recognition of adsorption phase transition of polymer on surface by neural network. Acta Physica Sinica, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [9] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [10] Sheng Zong-Qiang, Fan Guang-Wei, Qian Jian-Fa. Investigations on the nuclear charge radii. Acta Physica Sinica, 2015, 64(11): 112101. doi: 10.7498/aps.64.112101
    [11] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [12] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [13] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [14] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [15] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [16] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  4247
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2023
  • Accepted Date:  19 February 2023
  • Available Online:  28 March 2023
  • Published Online:  05 June 2023

/

返回文章
返回