Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage

Liu Kai Fang Ze Dai Dong

Citation:

Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage

Liu Kai, Fang Ze, Dai Dong
PDF
HTML
Get Citation
  • In practical applications of dielectric barrier discharges under atmospheric pressure, plasma usually acts on non-smooth surfaces. The electric field distortion and uneven surface charge distribution caused by its surface morphology will create an adverse effect on the uniformity and stability of the discharge. In this paper, we establish a simulation model of atmospheric pressure helium dielectric barrier discharge on a wavy lower dielectric plate, and use a sinusoidal clipping voltage to regulate the discharge uniformity. The results show that the discharge uniformity is improved compared with the unclipped case, and the discharge mode is changed from columnar mode to quasi-uniform mode. This can be attributed to the incomplete discharge dissipation caused by the reduction of air gap voltage; the subsequent electron backflow process neutralizes the the residual space electrons with the surface charge, which limits the accumulation of surface charges. With the increase of clipping ratio, the surface charge distribution becomes more uniform, and the radial fluctuation of electric field distribution weakens. In addition, the discharge efficiency is improved in a certain clipping range. This study reveals the mechanism of clipping voltage influence on non-smooth surface discharge, and provides a new idea for regulating the uniformity of dielectric barrier discharge.
      Corresponding author: Dai Dong, ddai@scut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFE0114700) and the National Natural Science Foundation of China (Grant No. 51877086).
    [1]

    梅丹华, 方志, 邵涛 2020 中国电机工程学报 40 1339Google Scholar

    Mei D H, Fang Z, Shao T 2020 Chin. Soc. Elec. Eng. 40 1339Google Scholar

    [2]

    戴栋, 宁文军, 邵涛 2017 电工技术学报 32 1Google Scholar

    Dai D, Ning W J, Shao T 2017 Trans. Chin. Elc. Soc. 32 1Google Scholar

    [3]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2017 高电压技术 42 3697Google Scholar

    Li H P, Yu D L, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2017 High Voltage Eng. 42 3697Google Scholar

    [4]

    Adamovich I, Agarwal S, Ahedo E, et al. 2022 J. Phys. D: Appl. Phys. 55 373001Google Scholar

    [5]

    Larouss M, Bekeschus S, Bogaerts A, Keidar M, Bogaerts A, Fridman A, Lu B X 2022 IEEE Trans. Radiat. Plasma Med. Sci. 6 127Google Scholar

    [6]

    Sanito R C, You S J, Wang Y F 2021 J. Environ. Manage. 288 112380Google Scholar

    [7]

    Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar

    [8]

    Gaunt L F, Beggs C B, Georghiou G E 2006 IEEE Trans. Plasma Sci. 34 1257Google Scholar

    [9]

    Ouyang J T, Li B, He F, Dai D 2018 Plasma Sci. Technol. 20 103002Google Scholar

    [10]

    Fang Z, Qiu Y, Zhang C, Kuffel E 2007 J. Phys. D:Appl. Phys. 40 1401Google Scholar

    [11]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201Google Scholar

    [12]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003Google Scholar

    [13]

    Zhang Y H, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923Google Scholar

    [14]

    Hao Y P, Zheng B, Liu Y G 2014 Phys. Plasmas 21 013503Google Scholar

    [15]

    Zhang P, Kortshagen U 2006 J. Phys. D: Appl. Phys. 39 153Google Scholar

    [16]

    Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517Google Scholar

    [17]

    Brauer I, Punset C, Purwins H G, Boeuf J P 1999 J. Appl. Phys. 85 7569Google Scholar

    [18]

    Boeuf J P, Bernecker B, Callegari T, Blanco S, Fournier R 2012 Appl. Phys. Lett. 100 244108Google Scholar

    [19]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar

    [20]

    Huang Z M, Hao Y P, Han Y Y, Yang L, Tang L, Liao Y F, Li L C 2017 Phys. Plasmas 24 113506Google Scholar

    [21]

    Ye Q Z, Wu Y F, Li X W, Chen T, Shao G W 2012 Plasma Sources Sci. Technol. 21 065008Google Scholar

    [22]

    Motrescu I, Ciolan M A, Sugiyama K, Kawamura N, Nagatsu M 2018 Plasma Sources Sci. Technol. 27 115005Google Scholar

    [23]

    Wang X X, Luo H Y, Liang Z, Mao T, Ma R L 2006 Plasma Sources Sci. Technol. 15 845Google Scholar

    [24]

    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001Google Scholar

    [25]

    Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann J L, Shimizu T, Karrer S 2010 J. Dtsch. Dermatol. Ges. 8 968Google Scholar

    [26]

    Buendia J A, Venkattraman A 2015 Europhys. Lett. 112 55002Google Scholar

    [27]

    Fu Y Y, Zhang P, Verboncoeur J P, Christlieb A J, Wang X X 2018 Phys. Plasmas 25 013530Google Scholar

    [28]

    Fu Y Y, Zhang P, Verboncoeur J P 2018 Appl. Phys. Lett. 113 054102Google Scholar

    [29]

    Levko D, Raja L L 2015 J. Appl. Phys. 117 173303Google Scholar

    [30]

    Go D B, Venkattraman A 2014 J. Phys. D: Appl. Phys. 47 503001Google Scholar

    [31]

    Venkattraman A, Garg A, Peroulis D, Alexeenko A A 2012 Appl. Phys. Lett. 100 083503Google Scholar

    [32]

    Cheng H, Liu X, Lu X P, Liu D W 2016 Phys. Plasmas 23 073517Google Scholar

    [33]

    Cheng H, Xu M Y, Pan S H, Lu X P, Liu D W 2018 Plasma Sci. Technol. 20 044006Google Scholar

    [34]

    Wang Q, Ning W J, Dai D, Zhang Y H 2019 Plasma Process. Polym. 17 1900182Google Scholar

    [35]

    Mujahid Z, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [36]

    Babaeva N Y, Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 235201Google Scholar

    [37]

    Babaeva N Y, Kushner M J 2013 J. Phys. D:Appl. Phys. 46 025401Google Scholar

    [38]

    Lin A, Biscop E, Gorbanev Y, Smits E, Bogaerts A 2021 Plasma Process. Polym. 19 e2100151Google Scholar

    [39]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001Google Scholar

    [40]

    Kong M G, Deng X T 2003 IEEE Trans. Plasma Sci. 31 7Google Scholar

    [41]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Process. Polym. 5 503Google Scholar

    [42]

    Ning W J, Dai D, Li L C 2018 Plasma Sources Sci. Technol. 27 08LT01Google Scholar

    [43]

    Cheng H, Liu X, Liu D W, Lu X P 2016 High Volt. 1 62Google Scholar

    [44]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [45]

    力伯曼, 里登伯格 著 (蒲以康等 译) 2018 等离子体放电与材料工艺原理: 第2版 (北京: 电子工业出版社) 第6—7页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K, et al.) 2018 Principles of Plasma Discharges and Materials Processing (2nd Ed.) (Beijing: Publishing House of Electronics Industry) pp6–7 (in Chinese)

    [46]

    Lazarou C, Koukounis D, Chiper A S, Costin C, Topala I, Georghiou G E 2015 Plasma Sources Sci. Technol. 24 035012Google Scholar

    [47]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [48]

    Purwins H G, Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001Google Scholar

    [49]

    Ellis H W, Pai R Y, McDaniel E W, Mason E A, Viehland L A 1976 At. Data Nucl. Data Tables. 17 177Google Scholar

    [50]

    Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D: Appl. Phys. 50 345201Google Scholar

    [51]

    Hagelaar G J M 2000 Phys. Rev. E 62 1452Google Scholar

    [52]

    Motz H, Wise H 1960 J. Chem. Phys. 32 1893Google Scholar

    [53]

    Bilici M A, Haase J R, Boyle C R, Go D B, Sankaran R M 2016 J. Appl. Phys. 119 223301Google Scholar

    [54]

    Boeuf J P, Yang L L, Pitchford L C 2013 J. Phys. D:Appl. Phys. 46 015201Google Scholar

    [55]

    Petra C G, Schenk O, Anitescu M 2014 Comput. Sci. Eng. 16 32Google Scholar

    [56]

    Li B, Dong L F, Zhang C, Shen Z K, Zhang X P 2014 J. Phys. D: Appl. Phys. 47 055205Google Scholar

    [57]

    Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123519Google Scholar

    [58]

    Ning W J, Dai D, Zhang Y H, Hao Y P, Li L C 2017 Phys. Plasmas 24 073509Google Scholar

    [59]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2003 J. Phys. D: Appl. Phys. 36 39Google Scholar

    [60]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949Google Scholar

    [61]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2013 Phys. Plasmas 20 073509Google Scholar

    [62]

    Wang Q, Zhou X Y, Dai D, Huang Z, Zhang D M 2021 Plasma Sources Sci. Technol. 30 05LT01Google Scholar

  • 图 1  w-DBD仿真模型的几何结构

    Figure 1.  Geometry of w-DBD simulation model.

    图 2  削波电压波形

    Figure 2.  Waveform of clipping voltage.

    图 3  稳态下DBD在外施电压周期内其平均电子密度的空间分布 (施加10 kHz, 1.5 kV正弦电压) (a)平滑表面DBD; (b) w-DBD

    Figure 3.  Spatial distribution of average electron density on DBD over one period of applied voltage at steady state (The voltage source is 10 kHz, 1.5 kV sinusoidal voltage): (a) Smooth surface DBD; (b) w-DBD.

    图 4  不同pc下, 放电达到稳态后一个外施电压周期内的平均电子密度的空间分布 (a) pc = 50%; (b) pc = 55%; (c) pc = 60%; (d) pc = 65%; (e) pc = 70%

    Figure 4.  Spatial distribution of average electron density over one period of applied voltage at steady state under different pc: (a) pc = 50%; (b) pc=55%; (c) pc = 60%; (d) pc = 65%; (e) pc = 70%.

    图 5  不同pc下, 放电达到稳态后一个外施电压周期内的外施电压Va, 气隙电压Vg和电流密度J (a) pc = 0; (b) pc = 50%; (c) pc = 55%; (d) pc = 60%; (e) pc = 65%; (f) pc = 70%

    Figure 5.  Temporal profiles of applied voltage Va, gap voltage Vg and current density J over one period of applied voltage at steady state under different pc: (a) pc = 0; (b) pc = 50%; (c) pc = 55%; (d) pc = 60%; (e) pc = 65%; (f) pc = 70%.

    图 6  pc不同时, 放电达到稳态后一个外施电压周期内的电压电流波形(a), (c), (e)和t1t5时刻对应的电子密度空间分布(b), (d), (f). 正负号表示该时刻的气隙电压极性 (a), (b) pc = 0; (c), (d) pc = 55%; (e), (f) pc = 70%

    Figure 6.  Voltage and current waveform (a), (c), (e) and spatial distribution (b), (d), (f) of electron density corresponding to t1 to t5 over one period of applied voltage at steady state under different pc. Plus and minus signs indicate air gap voltage polarity at this time: (a), (b) pc = 0; (c), (d) pc = 55%; (e), (f) pc = 70%.

    图 7  pc分别为0, 55%, 70%时, t1 (a)和t4 (b)时刻对应的净表面电荷密度ρs

    Figure 7.  Net surface charge density ρs at t1 (a) and t4 (b) under pc of 0, 55% and 70% respectively.

    图 8  pc分别为0, 55%, 70%时 (a1), (b1) t1t4时刻对应的轴向平均电场强度|Ez|; (a2) t1时刻距上介质板表面0.05 mm附近的径向电场强度Er; (b2) t4时刻距下介质板表面0.05 mm附近的径向电场强度Er

    Figure 8.  Under pc of 0, 55% and 70%: (a1), (b1) Axial average electric field |Ez| at t1 and t4 respectively; (a2) radial electric field Er near surface of 0.05 mm upper dielectric plate at t1; (b2) radial electric field Er near surface of 0.05 mm lower dielectric plate at t4.

    图 9  pc分别为0, 55%, 70%时, 介质板表面附近的电子通量Γe (a) t1时刻上介质板表面附近(r = 0—8 mm, z = 2—3 mm区域); (b) t4时刻下介质板表面附近(r = 0—8 mm, z = 0.9—2.0 mm区域)

    Figure 9.  Electron flux Γe near dielectric plate at pc of 0, 55% and 70%: (a) Near upper dielectric plate (r = 0–8 mm, z = 2–3 mm) at t1; (b) near lower dielectric plate (r = 0–8 mm, z = 0.9–2.0 mm) at t4.

    图 10  pc分别为0, 55%, 70%时, t1 (a)和t4 (b)时刻对应的轴向平均种子电子密度ne

    Figure 10.  Axial average seed electron density ne at t1 (a) and t4 (b) under pc of 0, 55% and 70% respectively.

    图 11  pc分别为0, 55%, 70%时, 正击穿过程中(从预电离阶段开始的半个外施电压周期)局部强放电处的轴向切线的电子密度时空分布, 以及气隙电压极性反转时刻的电子密度ne, 离子密度ni和轴向电场|Ez|的轴向分布 (a) pc = 0; (b) pc = 55%; (c) pc = 70%

    Figure 11.  Spatial-temporal distribution of electron density at axial tangent of the partial strong discharge during positive breakdown (half of applied voltage period starting from pre-ionization stage), and axial distribution of electron density ne, ion density ni and axial electric field |Ez| at the time of polarity reversal of the air gap voltage under different pc: (a) pc = 0; (b) pc = 55%; (c) pc = 70%.

    图 12  电子回流开始和结束时刻下表面电荷密度分布 (a) pc = 55%; (b) pc = 70%

    Figure 12.  Lower surface’s charge density distribution at beginning and the end of electron backflow: (a) pc = 55%; (b) pc = 70%.

    图 13  pc分别为0, 55%, 70%时, 5个周期内局部强放电的击穿强度(以轴向平均电子密度表示, 其中削波电压下选取的正负击穿位置不同)

    Figure 13.  Strength of local intense discharge or discharge column within five periods under pc of 0, 55% and 70% respectively (Which is expressed as axial average electron density, and selected positions of positive and negative breakdown under the clipping voltage are different).

    图 14  pc分别为0, 55%, 70%时, 放电达到稳态后一个外施电压周期内的彭宁电离速率

    Figure 14.  Penning ionization rates over one period of applied voltage at steady state under pc of 0, 55% and 70% respectively.

    图 15  不同pc下, 放电达到稳态后预电离阶段的轴向平均电场强度|Ez|和轴向平均种子电荷密度(ne + ni)avg

    Figure 15.  Axial average electric field |Ez| and axial average seed charge density (ne + ni)avg at pre-ionization stage after discharge reaches steady state under different pc.

    图 16  不同pc下, 放电达到稳态后一个外施电压周期内的时间平均功率密度Pav和时间平均电子密度neav

    Figure 16.  Time-averaged power density Pav and time-averaged electron density neav over one period of applied voltage at steady state under different pc.

    表 1  等离子体模型的边界条件

    Table 1.  Boundary conditions of plasma model.

    边界表达式备注
    ABV = Vam高压电极
    GHV = 0接地
    BC, CD, EF, FG$- {\boldsymbol{n}} \cdot D = 0$零电荷
    DE$- {\boldsymbol{n} } \cdot { {\boldsymbol{\varGamma } }_{\text{e} } } = 0$绝缘
    $- {\boldsymbol{n} } \cdot { {\boldsymbol{\varGamma } }_{ \text{ε}} } = 0$
    DJ, EIEq. (10)—Eq. (12),
    Eq. (14), Eq. (15)
    介质表面
    HIJA${ {\partial V}/{\partial r} } = 0$对称轴
    DownLoad: CSV

    表 2  模型中输入的初始值

    Table 2.  Initial parameters applied in model.

    参数初始值
    电子数密度/m–32.2×1013
    He+数密度/m–31.0×1013
    $ {\text{He}}_2^ + $数密度/m–31.0×1013
    $ {\text{N}}_2^ + $数密度/m–31.0×1012
    $ {\text{N}}_4^ + $数密度/m–31.0×1012
    He*摩尔分数1.0×10–9
    $ {\text{He}}_2^* $摩尔分数1.0×10–9
    N2摩尔分数100×10–6
    平均电子/eV4
    气体温度/K300
    压强/Torr760
    DownLoad: CSV
  • [1]

    梅丹华, 方志, 邵涛 2020 中国电机工程学报 40 1339Google Scholar

    Mei D H, Fang Z, Shao T 2020 Chin. Soc. Elec. Eng. 40 1339Google Scholar

    [2]

    戴栋, 宁文军, 邵涛 2017 电工技术学报 32 1Google Scholar

    Dai D, Ning W J, Shao T 2017 Trans. Chin. Elc. Soc. 32 1Google Scholar

    [3]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2017 高电压技术 42 3697Google Scholar

    Li H P, Yu D L, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2017 High Voltage Eng. 42 3697Google Scholar

    [4]

    Adamovich I, Agarwal S, Ahedo E, et al. 2022 J. Phys. D: Appl. Phys. 55 373001Google Scholar

    [5]

    Larouss M, Bekeschus S, Bogaerts A, Keidar M, Bogaerts A, Fridman A, Lu B X 2022 IEEE Trans. Radiat. Plasma Med. Sci. 6 127Google Scholar

    [6]

    Sanito R C, You S J, Wang Y F 2021 J. Environ. Manage. 288 112380Google Scholar

    [7]

    Laroussi M, Lu X, Keidar M 2017 J. Appl. Phys. 122 020901Google Scholar

    [8]

    Gaunt L F, Beggs C B, Georghiou G E 2006 IEEE Trans. Plasma Sci. 34 1257Google Scholar

    [9]

    Ouyang J T, Li B, He F, Dai D 2018 Plasma Sci. Technol. 20 103002Google Scholar

    [10]

    Fang Z, Qiu Y, Zhang C, Kuffel E 2007 J. Phys. D:Appl. Phys. 40 1401Google Scholar

    [11]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201Google Scholar

    [12]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003Google Scholar

    [13]

    Zhang Y H, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923Google Scholar

    [14]

    Hao Y P, Zheng B, Liu Y G 2014 Phys. Plasmas 21 013503Google Scholar

    [15]

    Zhang P, Kortshagen U 2006 J. Phys. D: Appl. Phys. 39 153Google Scholar

    [16]

    Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517Google Scholar

    [17]

    Brauer I, Punset C, Purwins H G, Boeuf J P 1999 J. Appl. Phys. 85 7569Google Scholar

    [18]

    Boeuf J P, Bernecker B, Callegari T, Blanco S, Fournier R 2012 Appl. Phys. Lett. 100 244108Google Scholar

    [19]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar

    [20]

    Huang Z M, Hao Y P, Han Y Y, Yang L, Tang L, Liao Y F, Li L C 2017 Phys. Plasmas 24 113506Google Scholar

    [21]

    Ye Q Z, Wu Y F, Li X W, Chen T, Shao G W 2012 Plasma Sources Sci. Technol. 21 065008Google Scholar

    [22]

    Motrescu I, Ciolan M A, Sugiyama K, Kawamura N, Nagatsu M 2018 Plasma Sources Sci. Technol. 27 115005Google Scholar

    [23]

    Wang X X, Luo H Y, Liang Z, Mao T, Ma R L 2006 Plasma Sources Sci. Technol. 15 845Google Scholar

    [24]

    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001Google Scholar

    [25]

    Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann J L, Shimizu T, Karrer S 2010 J. Dtsch. Dermatol. Ges. 8 968Google Scholar

    [26]

    Buendia J A, Venkattraman A 2015 Europhys. Lett. 112 55002Google Scholar

    [27]

    Fu Y Y, Zhang P, Verboncoeur J P, Christlieb A J, Wang X X 2018 Phys. Plasmas 25 013530Google Scholar

    [28]

    Fu Y Y, Zhang P, Verboncoeur J P 2018 Appl. Phys. Lett. 113 054102Google Scholar

    [29]

    Levko D, Raja L L 2015 J. Appl. Phys. 117 173303Google Scholar

    [30]

    Go D B, Venkattraman A 2014 J. Phys. D: Appl. Phys. 47 503001Google Scholar

    [31]

    Venkattraman A, Garg A, Peroulis D, Alexeenko A A 2012 Appl. Phys. Lett. 100 083503Google Scholar

    [32]

    Cheng H, Liu X, Lu X P, Liu D W 2016 Phys. Plasmas 23 073517Google Scholar

    [33]

    Cheng H, Xu M Y, Pan S H, Lu X P, Liu D W 2018 Plasma Sci. Technol. 20 044006Google Scholar

    [34]

    Wang Q, Ning W J, Dai D, Zhang Y H 2019 Plasma Process. Polym. 17 1900182Google Scholar

    [35]

    Mujahid Z, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [36]

    Babaeva N Y, Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 235201Google Scholar

    [37]

    Babaeva N Y, Kushner M J 2013 J. Phys. D:Appl. Phys. 46 025401Google Scholar

    [38]

    Lin A, Biscop E, Gorbanev Y, Smits E, Bogaerts A 2021 Plasma Process. Polym. 19 e2100151Google Scholar

    [39]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001Google Scholar

    [40]

    Kong M G, Deng X T 2003 IEEE Trans. Plasma Sci. 31 7Google Scholar

    [41]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Process. Polym. 5 503Google Scholar

    [42]

    Ning W J, Dai D, Li L C 2018 Plasma Sources Sci. Technol. 27 08LT01Google Scholar

    [43]

    Cheng H, Liu X, Liu D W, Lu X P 2016 High Volt. 1 62Google Scholar

    [44]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [45]

    力伯曼, 里登伯格 著 (蒲以康等 译) 2018 等离子体放电与材料工艺原理: 第2版 (北京: 电子工业出版社) 第6—7页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K, et al.) 2018 Principles of Plasma Discharges and Materials Processing (2nd Ed.) (Beijing: Publishing House of Electronics Industry) pp6–7 (in Chinese)

    [46]

    Lazarou C, Koukounis D, Chiper A S, Costin C, Topala I, Georghiou G E 2015 Plasma Sources Sci. Technol. 24 035012Google Scholar

    [47]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [48]

    Purwins H G, Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001Google Scholar

    [49]

    Ellis H W, Pai R Y, McDaniel E W, Mason E A, Viehland L A 1976 At. Data Nucl. Data Tables. 17 177Google Scholar

    [50]

    Yan W, Xia Y, Bi Z H, Song Y, Wang D Z, Sosnin E A, Skakun V S, Liu D P 2017 J. Phys. D: Appl. Phys. 50 345201Google Scholar

    [51]

    Hagelaar G J M 2000 Phys. Rev. E 62 1452Google Scholar

    [52]

    Motz H, Wise H 1960 J. Chem. Phys. 32 1893Google Scholar

    [53]

    Bilici M A, Haase J R, Boyle C R, Go D B, Sankaran R M 2016 J. Appl. Phys. 119 223301Google Scholar

    [54]

    Boeuf J P, Yang L L, Pitchford L C 2013 J. Phys. D:Appl. Phys. 46 015201Google Scholar

    [55]

    Petra C G, Schenk O, Anitescu M 2014 Comput. Sci. Eng. 16 32Google Scholar

    [56]

    Li B, Dong L F, Zhang C, Shen Z K, Zhang X P 2014 J. Phys. D: Appl. Phys. 47 055205Google Scholar

    [57]

    Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123519Google Scholar

    [58]

    Ning W J, Dai D, Zhang Y H, Hao Y P, Li L C 2017 Phys. Plasmas 24 073509Google Scholar

    [59]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2003 J. Phys. D: Appl. Phys. 36 39Google Scholar

    [60]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949Google Scholar

    [61]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2013 Phys. Plasmas 20 073509Google Scholar

    [62]

    Wang Q, Zhou X Y, Dai D, Huang Z, Zhang D M 2021 Plasma Sources Sci. Technol. 30 05LT01Google Scholar

  • [1] Zhao Kai, Mu Zong-Xin, Zhang Jia-Liang. Dielectric layer equivalent capacitance and loading performance of a coaxial dielectric barrier discharge reactor. Acta Physica Sinica, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [2] Dai Dong, Wang Qi-Ming, Hao Yan-Peng. Experimental study on asymmetrical period-one discharge in dielectric barrier discharge in helium at atmospheric pressure. Acta Physica Sinica, 2013, 62(13): 135204. doi: 10.7498/aps.62.135204
    [3] Dong Li-Fang, Yue Han, Fan Wei-Li, Li Yuan-Yuan, Yang Yu-Jie, Xiao Hong. Target patterns obtained by suddenly increasing applied voltage in dielectric barrier discharge. Acta Physica Sinica, 2011, 60(6): 065206. doi: 10.7498/aps.60.065206
    [4] Liu Wei-Yuan, Yue Han, Wang Shuai, Liu Zhong-Wei, Chen Qiang, Dong Li-Fang, Yang Yu-Jie. Characteristics of dielectric barrier discharge with different dielectric layer structures. Acta Physica Sinica, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [5] Dong Li-Fang, Li Shu-Feng, Fan Wei-Li. Defects in transition between different filament structures in dielectric barrier discharge. Acta Physica Sinica, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [6] Wang Li-Ming, Liang Zhuo, Guan Zhi-Cheng, Luo Hai-Yun, Wang Xin-Xin. Influences of gas flow on gas temperature and discharge mode in dielectric barrier discharge of nitrogen at atmospheric pressure. Acta Physica Sinica, 2010, 59(12): 8739-8746. doi: 10.7498/aps.59.8739
    [7] Dong Li-Fang, Yang Yu-Jie, Fan Wei-Li, Yue Han, Wang Shuai, Xiao Hong. Study on the phase transition of the filaments structure in dielectric barrier discharge. Acta Physica Sinica, 2010, 59(3): 1917-1922. doi: 10.7498/aps.59.1917
    [8] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [9] Dong Li-Fang, Zhao Hai-Tao, Xie Wei-Xia, Wang Hong-Fang, Liu Wei-Li, Fan Wei-Li, Xiao Hong. Experimental investigation of square superlattice pattern formation in a dielectric barrier discharge. Acta Physica Sinica, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [10] Dong Li-Fang, Wang Hong-Fang, Liu Wei-Li, He Ya-Feng, Liu Fu-Cheng, Liu Shu-Hua. Influence of dielectric parameters on temporal behavior of dielectric barrier discharge. Acta Physica Sinica, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [11] Li Xue-Chen, Jia Peng-Ying, Liu Zhi-Hui, Li Li-Chun, Dong Li-Fang. Study on the transition from filamentary to uniform discharge in dielectric barrier discharge. Acta Physica Sinica, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [12] Dong Li-Fang, Gao Rui-Ling, He Ya-Feng, Fan Wei-Li, Li Xue-Chen, Liu Shu-Hua, Liu Wei-Li. Study on the interaction of microdischarge channels in dielectric barrier discharge pattern. Acta Physica Sinica, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [13] Investigation on power transfer in dielectric barrier discharge. Acta Physica Sinica, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [14] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [15] Wang Yan-Hui, Wang De-Zhen. Characteristics of dielectric barrier homogenous discharge at atmospheric pressure in nitrogen. Acta Physica Sinica, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [16] He Ya-Feng, Dong Li-Fang, Liu Fu-Cheng, Fan Wei-Li. Localized hexagonal structure in dielectric barrier discharge. Acta Physica Sinica, 2005, 54(9): 4236-4239. doi: 10.7498/aps.54.4236
    [17] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] Wang Yan-Hui, Wang De-Zhen. Study on homogeneous multiple-pulse barrier discharge at atmospheric pressure. Acta Physica Sinica, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [19] Dong Li-Fang, Mao Zhi-Guo, Ran Jun-Xia. Study on the electrical characteristic of different modes of dielectric barrier discharge in argon. Acta Physica Sinica, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [20] Yin Zeng-Qian, Wang Long, Dong Li-Fang, Li Xue-Chen, Chai Zhi-Fang. The mapping equation of micro-discharge in dielectric barrier discharges. Acta Physica Sinica, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
  • supplement 13-20230385sf 刘凯(补充材料).pdf supplement
Metrics
  • Abstract views:  1910
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2023
  • Accepted Date:  07 May 2023
  • Available Online:  08 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回