-
Electromagnetic plasma accelerators which can generate high-density and hypervelocity plasma jets have been widely used in plasma physics research and application fields. An experimental platform of parallel-plate accelerator electromagnetically driven plasma is established in this paper, mainly including a parallel-plate accelerator, a power supply, magnetic probes, photodiodes, a current probe, and an oscilloscope. The current distribution and plasma velocity characteristics of a parallel-plate accelerator under static pressure are studied by using magnetic probe array and photodiode array. The working gas is synthetic air. A mechanical pump is used to pump the vacuum chamber to about 1 Pa, and then synthetic air is injected into the vacuum chamber to a target pressure. The power supply of the parallel-plate accelerator has a sinusoidal oscillation attenuation waveform with a total capacitance of 120 μF and a total inductance of about 400 nH. When the charging voltage is 13 kV, the discharge current is 170 kA and the pulse width is 23.5 μs. The discharge currents are 38, 100, 135 kA, and 170 kA when the pressures are 100, 200, 400 and 1000 Pa, respectively. The current distribution of the parallel-plate accelerator is concentrated, and the discharge mode is consistent with the snowplow mode, when the discharge current is small and the working pressure is high. As the discharge current increases or the working pressure decreases, a diffuse current distribution gradually appears in the parallel-plate accelerator. Two regions are formed, i.e. the plasma front region and the plasma tail region. The diffuse current distribution phenomenon is more remarkable when the discharge current is higher or the working pressure is lower. The plasma front current distribution proportion decreases and the plasma front velocity increases with the increase of discharge current and the decrease of working pressure. However, the plasma velocity proportion increased is much lower than the discharge current proportion increased or working pressure proportion decreased. When the discharge current increases from 38–170 kA, the plasma velocity increases from 25.0 km/s to 33.6 km/s, with the velocity increment being only 34.4%. The plasma front region is subjected to both the Lorentz force and the thermal pressure of the plasma tail region.
-
Keywords:
- parallel-plate /
- current distribution /
- plasma velocity /
- static pressure
[1] Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar
[2] Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar
[3] 蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401Google Scholar
Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar
[4] Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar
[5] Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar
[6] Underwood T C, Loebner K T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar
[7] Kong D F, Zhuang G, Lan T, Zhang S B, Ye Y, Dong Q L, Chen C, Wu J, Zhang S, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Wen F, Zi P F, Li L, Hu G H, Song Y T 2023 Plasma Sci. Technol. 25 065601Google Scholar
[8] Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar
[9] Cassibry J T, Stanic M, Hsu S C, Witherspoon F D, Abarzhi S I 2012 Phys. Plasmas 19 052702Google Scholar
[10] Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2015 J. Plasma Physics 81 345810201Google Scholar
[11] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar
Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar
[12] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar
Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar
[13] Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar
[14] Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar
[15] Tou T Y 1995 IEEE Trans. Plasma Sci. 23 870Google Scholar
[16] Al-Hawat S 2004 IEEE Trans. Plasma Sci. 32 764Google Scholar
[17] Mathuthua M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar
[18] Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar
[19] Lee S 2014 J. Fusion Energ. 33 319Google Scholar
[20] Lee S, Saw S H, Lee P C K, Rawat R S, Schmidt H 2008 Appl. Phys. Lett. 92 111501Google Scholar
[21] Aghamira F M, Behbahani R A 2011 J. Appl. Phys. 109 043301Google Scholar
[22] Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar
[23] 高著秀, 黄建国, 韩建伟, 杨宣宗, 冯春华 2010 航天器环境工程 27 285
Gao Z X, Huang J G, Han J W, Yang X Z, Feng C H 2010 Spacecraft Environment Engineering 27 285
[24] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar
Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar
[25] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar
Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar
[26] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar
Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar
[27] 杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113Google Scholar
Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113Google Scholar
[28] 刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均 2021 物理学报 70 205205Google Scholar
Liu S, Shi Y H, Lin T Y, Zhang Y P, Lu Z J, Yang L J 2021 Acta Phys. Sin. 70 205205Google Scholar
-
图 5 不同电流下的波形图 (a) 38 kA, 磁场; (b) 38 kA, 光电二极管; (c) 135 kA, 磁场; (d) 135 kA, 光电二极管; (e) 170 kA, 磁场; (f) 170 kA, 光电二极管
Figure 5. Waveforms under different currents: (a) 38 kA, magnetic field; (b) 38 kA, photodiode; (c) 135 kA, magnetic field; (d) 135 kA, photodiode; (e) 170 kA, magnetic field; (f) 170 kA, photodiode.
图 8 不同静态气压下波形图 (a) 100 Pa, 磁场; (b) 100 Pa, 光电二极管; (c) 400 Pa, 磁场; (d) 400 Pa, 光电二极管; (e) 1000 Pa, 磁场; (f) 1000 Pa, 光电二极管
Figure 8. Waveforms under different pressure: (a) 100 Pa, magnetic field; (b) 100 Pa, photodiode; (c) 400 Pa, magnetic field; (d) 400 Pa, photodiode; (e) 1000 Pa, magnetic field; (f) 1000 Pa, photodiode.
-
[1] Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar
[2] Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar
[3] 蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401Google Scholar
Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar
[4] Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar
[5] Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar
[6] Underwood T C, Loebner K T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar
[7] Kong D F, Zhuang G, Lan T, Zhang S B, Ye Y, Dong Q L, Chen C, Wu J, Zhang S, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Wen F, Zi P F, Li L, Hu G H, Song Y T 2023 Plasma Sci. Technol. 25 065601Google Scholar
[8] Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar
[9] Cassibry J T, Stanic M, Hsu S C, Witherspoon F D, Abarzhi S I 2012 Phys. Plasmas 19 052702Google Scholar
[10] Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2015 J. Plasma Physics 81 345810201Google Scholar
[11] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar
Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar
[12] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar
Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar
[13] Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar
[14] Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar
[15] Tou T Y 1995 IEEE Trans. Plasma Sci. 23 870Google Scholar
[16] Al-Hawat S 2004 IEEE Trans. Plasma Sci. 32 764Google Scholar
[17] Mathuthua M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar
[18] Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar
[19] Lee S 2014 J. Fusion Energ. 33 319Google Scholar
[20] Lee S, Saw S H, Lee P C K, Rawat R S, Schmidt H 2008 Appl. Phys. Lett. 92 111501Google Scholar
[21] Aghamira F M, Behbahani R A 2011 J. Appl. Phys. 109 043301Google Scholar
[22] Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar
[23] 高著秀, 黄建国, 韩建伟, 杨宣宗, 冯春华 2010 航天器环境工程 27 285
Gao Z X, Huang J G, Han J W, Yang X Z, Feng C H 2010 Spacecraft Environment Engineering 27 285
[24] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar
Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar
[25] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar
Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar
[26] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar
Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar
[27] 杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113Google Scholar
Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113Google Scholar
[28] 刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均 2021 物理学报 70 205205Google Scholar
Liu S, Shi Y H, Lin T Y, Zhang Y P, Lu Z J, Yang L J 2021 Acta Phys. Sin. 70 205205Google Scholar
Catalog
Metrics
- Abstract views: 2416
- PDF Downloads: 47
- Cited By: 0