-
Transition-metal phosphorous chalcogenide MPS (M = transition metal), an emerging type of two-dimensional (2D) van der Waals material with the unique optical and opto-electronic properties, has received much attention. The quasi-one-dimensional chain structure of Nb4P2S21 will possess the strong anisotropic optical and photoelectric properties. Therefore, the single crystal and low-dimensional materials of Nb4P2S21 have potential applications in new polarization controllers, polarization-sensitive photoelectronic detectors, etc. However, there is still a lack of research on the anisotropic optical properties of the high-quality Nb4P2S21 single crystals. Herein, the millimeter-sized Nb4P2S21 single crystals are successfully prepared by the chemical vapor transport method. The chemical composition, the crystal structure and the anisotropic optical properties of the Nb4P2S21 single crystals are carefully analyzed. The energy dispersive X-ray spectroscopy results show that the element distribution is uniform and the element ratio is close to the stoichiometric ratio. The X-ray diffraction and the transmission electron microscopy results show a good crystallinity. The absorption spectra shows that the optical band gap of the Nb4P2S21 single crystal is 1.8 eV. Interestingly, the Nb4P2S21 single crystal can be mechanically exfoliated to obtain few-layer material. The thickness-dependent Raman spectra show that the Raman vibration peaks of bulk and few-layer Nb4P2S21 each have only a weak shift, indicating a weak interlayer interaction in the Nb4P2S21 single crystal. In order to make an in-depth study of the optical properties of Nb4P2S21 single crystals, the polarized-dependent Raman spectra and the femtosecond transient absorption (TA) spectra by using pump pulses and probe pulses with a wavelength of 400 nm and a wavelength range of 500–700 nm are recorded. Importantly, the polarized-dependent Raman scattering spectra with the angle-dependent measurements reveal that the intensity of Raman peak at 202 cm–1 and at 489 cm–1 show a 2-fold symmetry and a 4-fold symmetry in the parallel and vertical polarization configurations, respectively. Moreover, the results of ultrafast carrier dynamics with the in-plane rotation angles of Nb4P2S21 single crystals in the parallel polarization configurations, clearly indicate that both the hot carrier number and the relaxation rate after photoexcitation have the in-plane anisotropic properties. These results are useful in understanding the in-plane anisotropic optical properties of Nb4P2S21 single crystal, which can further promote their applications in the low-dimensional angle-dependent optoelectronics.
-
Keywords:
- Nb4P2S21 /
- polarization Raman /
- ultrafast carrier dynamics /
- optical anisotropy
[1] Matsuoka T, Rao R, Susner M A, Conner B S, Zhang D, Mandrus D 2023 Phys. Rev. B 107 165125Google Scholar
[2] Liu Q Y, Wang L, Fu Y, Zhang X, Huang L L, Su H M, Lin J H, Chen X B, Yu D P, Cui X D, Mei J W, Dai J F 2021 Phys. Rev. B 103 235411Google Scholar
[3] Mi M J, Zheng X W, Wang S L, Zhou Y, Yu L X, Xiao H, Song H N, Shen B, Li F S, Bai L H, Chen Y X, Wang S P, Liu X H, Wang Y L 2022 Adv. Funct. Mater. 32 2112750Google Scholar
[4] Li P Y, Zhang J T, Zhu C, Shen W F, Hu C G, Fu W, Yan L, Zhou L J, Zheng L, Lei H X, Liu Z, Zhao W N, Gao P Q, Yu P, Yang G W 2021 Adv. Mater. 33 2102541Google Scholar
[5] Tan J N, Hu H M, Cai B, Xu D G, Ouyang G 2022 Phys. Rev. B 106 195424Google Scholar
[6] Wang F, Sendeku M G 2022 Nanostructured Materials for Sustainable Energy: Design, Evaluation, and Applications (Washington, DC: American Chemical Society) pp1–25
[7] Feringa F, Vink J M, van Wees B J 2022 Phys. Rev. B 106 224409Google Scholar
[8] Storm A, Köster J, Ghorbani-Asl M, Kretschmer S, Gorelik T E, Kinyanjui M K, Krasheninnikov A V, Kaiser U 2023 ACS Nano 17 4250Google Scholar
[9] Xiao Z, Dai X Y, Jiang D T, Xie H G, Liu X P, Wu M L, Liu D M, Li Y, Qian Z F, Wang R H 2023 Adv. Funct. Mater. DOI: 10.1002/adfm.202304766
[10] Oliveira F M, Paštika J, Plutnarová I, Mazánek V, Strutyński K, Melle-Franco M, Sofer Z, Gusmão R 2023 Small Methods 7 2201358Google Scholar
[11] Chen Q, Ding Q Y, Wang Y T, Xu Y H, Wang J L 2020 J. Phys. Chem. C 124 12075Google Scholar
[12] Samal R, Sanyal G, Chakraborty B, Rout C S 2021 J. Mater. Chem. A 9 2560Google Scholar
[13] Sen D, Saha-Dasgupta T 2023 Phys. Rev. Mater. 7 064008Google Scholar
[14] Peng J, Yang X Y, Lu Z Y, Huang L, Chen X Y, He M, Shen J D, Xing Y, Liu M F, Qu Z, Wang Z C, Li L L, Dong S, Liu J M 2023 Adv. Quantum Technol. 6 2200105Google Scholar
[15] Chu H, Roh C J, Island J O, Li C, Lee S, Chen J, Park J G, Young A F, Lee J S, Hsieh D 2020 Phys. Rev. Lett. 124 027601Google Scholar
[16] Haines C R S, Coak M J, Wildes A R, Lampronti G I, Liu C, Nahai-Williamson P, Hamidov H, Daisenberger D, Saxena S S 2018 Phys. Rev. Lett. 121 266801Google Scholar
[17] Xia B Q, He B W, Zhang J J, Li L Q, Zhang Y Z, Yu J G, Ran J R, Qiao S Z 2022 Adv. Energy Mater. 12 2201449Google Scholar
[18] Li Y, Fu J, Mao X Y, Chen C, Liu H, Gong M, Zeng H L 2021 Nat. Commun. 12 5896Google Scholar
[19] Chen C, Liu H, Lai Q L, Mao X Y, Fu J, Fu Z M, Zeng H L 2022 Nano Lett. 22 3275Google Scholar
[20] Wang X G, Xiong T, Zhao K, Zhou Z Q, Xin K Y, Deng H X, Kang J, Yang J H, Liu Y Y, Wei Z M 2022 Adv. Mater. 34 2107206Google Scholar
[21] Sun J, Heo J, Yun H 2015 Acta Cryst. 71 278Google Scholar
[22] Goh E Y, Kim S J, Jung D 2002 J. Solid State Chem. 168 119Google Scholar
[23] Camerel F, Gabriel J C P, Batail P, Davidson P, Lemaire B, Schmutz M, Gulik-Krzywicki T, Bourgaux C 2002 Nano Lett. 2 403Google Scholar
[24] Yu J, Yun H 2011 Acta Cryst. 67 i24Google Scholar
[25] Lee Y, Yoon W, Yun H 2014 Acta Cryst. 70 i8Google Scholar
[26] Xu X Q, Yang L, Zheng W, Zhang H, Wu F S, Tian Z H, Zhang P G, Sun Z M 2022 Mater. Rep. Energy 2 100080Google Scholar
[27] Choi K H, Oh S, Chae S, Jeong B J, Kim B J, Jeon J, Lee S H, Yoon S O, Woo C, Dong X, Ghulam A, Lim C, Liu Z, Wang C, Junaid A, Lee J H, Yu H K, Choi J Y 2021 J. Alloys Compd. 864 158811Google Scholar
[28] Zhao K, Yang J H, Zhong M Z, Gao Q, Wang Y, Wang X T, Shen W F, Hu C G, Wang K Y, Shen G Z, Li M, Wang J L, Hu W D, Wei Z M 2021 Adv. Funct. Mater. 31 2006601Google Scholar
[29] Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar
[30] Bang H, Kim Y, Kim S, Kim S J 2008 J. Solid State Chem. 181 1798Google Scholar
[31] Wang R J, Cui Q L, Zhu W, Niu Y J, Liu Z F, Zhang L, Wu X J, Chen S M, Song L 2022 Chin. Phys. B 31 096802Google Scholar
[32] Chen H P, Li Y, Wu H B, Peng Y, Fang Y, Chen C Z, Xie S P, Song L 2019 Solid State Commun. 289 56Google Scholar
[33] Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155Google Scholar
[34] Pimenta M A, Resende G C, Ribeiro H B, Carvalho B R 2021 Phys. Chem. Chem. Phys. 23 27103Google Scholar
-
图 1 (a) Nb4P2S21晶体的原子结构模型; (b) Nb4P2S21单晶的XRD谱和光学照片; (c), (d) Nb4P2S21单晶的SEM图像和EDS成分分析; (e) Nb4P2S21 单晶的高分辨透射电子显微镜图像和选区电子衍射图; (f) Nb4P2S21 单晶的紫外-可见-近红外吸收光谱
Figure 1. (a) Atomic schematic of Nb4P2S21 crystalline structure; (b) the X-ray diffraction pattern of the Nb4P2S21 single crystal and the photo of typical Nb4P2S21 single crystals (inset); (c), (d) the SEM image and EDS results of Nb4P2S21 single crystal; (e) the HRTEM image and selected area electron diffraction pattern of Nb4P2S21 single crystal; (f) the UV-VIS-NIR absorption spectrum of Nb4P2S21 single crystal.
图 2 (a) Nb4P2S21纳米片的光学照片; (b) Nb4P2S21纳米片的AFM形貌图; (c) Nb4P2S21单晶和不同层数纳米片的Raman光谱; (d) 波数为342 cm–1和412 cm–1的Raman振动峰随层数的变化
Figure 2. (a) Optical image of the mechanically exfoliated Nb4P2S21 nanosheets; (b) the AFM image of the Nb4P2S21 nanosheets with different layers; (c) the thickness-dependent Raman spectrum of the Nb4P2S21 single crystal and nanosheets with different layers; (d) the evolution of Raman peaks located at 342 cm–1 and 412 cm–1 with different layers of Nb4P2S21 nanosheets.
图 3 (a), (b) 平行和垂直构型下, Nb4P2S21单晶随角度变化的偏振Raman峰强度的等高彩图. (c), (d) 平行和垂直构型下, 202 cm–1处的偏振Raman峰强度的极图. (e), (f)平行和垂直构型下, 489 cm–1处的偏振Raman峰强度的极图
Figure 3. (a), (b) Contour colour map of polarization Raman intensities under the parallel and vertical configurations; (c), (d) polar plots of the intensity of polarization Raman peak at 202 cm–1 with the rotation angle; (e), (f) polar plots of the intensity of polarization Raman peak at 489 cm–1 with the rotation angle.
图 4 (a) 飞秒瞬态吸收光谱测试示意图, θ表示Nb4P2S21的面内旋转角; (b), (c) θ = 0°和θ = 90°时, 400 nm光激发后Nb4P2S21在不同时间延迟(∆τ)下的瞬态吸收光谱, ∆OD表示泵浦导致的光密度变化(m∆OD = 10–3 ∆OD); (d) 光激发后∆τ = 440 fs, θ = 0°和θ = 90°时的瞬态吸收光谱; (e) θ = 0°, 30°, 45°, 70°, 90°时, 680 nm探测波长下的载流子动力学曲线; (f) ∆τ = 440 fs时, 不同角度瞬态吸收信号强度的极图
Figure 4. (a) Schematic illustration of the femtosecond transient absorption (TA) spectroscopy measurement. θ is the in-plane rotation angle of Nb4P2S21; (b), (c) time delay dependent TA spectra of the Nb4P2S21 after 400 nm excitation at the rotation angle of 0° and 90°. ∆OD is the change of optical density due to pumping (m∆OD = 10–3 ∆OD); (d) TA spectra at the time delay ∆τ of 440 fs after photoexcitation at the rotation angle of 0° and 90°; (e) TA dynamics probed at 680 nm at the sample rotation angle of 0°, 30°, 45°, 70° and 90°; (f) the pole plot of the absorption intensity of the different angle after photoexcitation at the time delay ∆τ of 440 fs
表 1 垂直和平行构型下Raman振动峰强随角度的变化
Table 1. Relationship between Raman peak intensity and angle in vertical and parallel configurations.
Raman
振动
模式角度依赖的Raman强度 平行构型($ {\boldsymbol{e}}_{{\rm{i}}}//{\boldsymbol{e}}_{{\rm{S}}} $) 垂直构型($ {\boldsymbol{e}}_{{\rm{i}}}\perp {\boldsymbol{e}}_{{\rm{S}}} $) A1 $ |a \cos^2 \varphi + c \sin^2 \varphi |^2 $ $ | - a \sin \varphi \cos \varphi + c\sin \varphi \cos \varphi |^2 $ A2 0 0 B1 $ {\left|e{\rm{c}}{\rm{o}}{\rm{s}}2\varphi \right|}^{2} $ $ {\left|e{\rm{s}}{\rm{i}}{\rm{n}}2\varphi \right|}^{2} $ B2 0 0 -
[1] Matsuoka T, Rao R, Susner M A, Conner B S, Zhang D, Mandrus D 2023 Phys. Rev. B 107 165125Google Scholar
[2] Liu Q Y, Wang L, Fu Y, Zhang X, Huang L L, Su H M, Lin J H, Chen X B, Yu D P, Cui X D, Mei J W, Dai J F 2021 Phys. Rev. B 103 235411Google Scholar
[3] Mi M J, Zheng X W, Wang S L, Zhou Y, Yu L X, Xiao H, Song H N, Shen B, Li F S, Bai L H, Chen Y X, Wang S P, Liu X H, Wang Y L 2022 Adv. Funct. Mater. 32 2112750Google Scholar
[4] Li P Y, Zhang J T, Zhu C, Shen W F, Hu C G, Fu W, Yan L, Zhou L J, Zheng L, Lei H X, Liu Z, Zhao W N, Gao P Q, Yu P, Yang G W 2021 Adv. Mater. 33 2102541Google Scholar
[5] Tan J N, Hu H M, Cai B, Xu D G, Ouyang G 2022 Phys. Rev. B 106 195424Google Scholar
[6] Wang F, Sendeku M G 2022 Nanostructured Materials for Sustainable Energy: Design, Evaluation, and Applications (Washington, DC: American Chemical Society) pp1–25
[7] Feringa F, Vink J M, van Wees B J 2022 Phys. Rev. B 106 224409Google Scholar
[8] Storm A, Köster J, Ghorbani-Asl M, Kretschmer S, Gorelik T E, Kinyanjui M K, Krasheninnikov A V, Kaiser U 2023 ACS Nano 17 4250Google Scholar
[9] Xiao Z, Dai X Y, Jiang D T, Xie H G, Liu X P, Wu M L, Liu D M, Li Y, Qian Z F, Wang R H 2023 Adv. Funct. Mater. DOI: 10.1002/adfm.202304766
[10] Oliveira F M, Paštika J, Plutnarová I, Mazánek V, Strutyński K, Melle-Franco M, Sofer Z, Gusmão R 2023 Small Methods 7 2201358Google Scholar
[11] Chen Q, Ding Q Y, Wang Y T, Xu Y H, Wang J L 2020 J. Phys. Chem. C 124 12075Google Scholar
[12] Samal R, Sanyal G, Chakraborty B, Rout C S 2021 J. Mater. Chem. A 9 2560Google Scholar
[13] Sen D, Saha-Dasgupta T 2023 Phys. Rev. Mater. 7 064008Google Scholar
[14] Peng J, Yang X Y, Lu Z Y, Huang L, Chen X Y, He M, Shen J D, Xing Y, Liu M F, Qu Z, Wang Z C, Li L L, Dong S, Liu J M 2023 Adv. Quantum Technol. 6 2200105Google Scholar
[15] Chu H, Roh C J, Island J O, Li C, Lee S, Chen J, Park J G, Young A F, Lee J S, Hsieh D 2020 Phys. Rev. Lett. 124 027601Google Scholar
[16] Haines C R S, Coak M J, Wildes A R, Lampronti G I, Liu C, Nahai-Williamson P, Hamidov H, Daisenberger D, Saxena S S 2018 Phys. Rev. Lett. 121 266801Google Scholar
[17] Xia B Q, He B W, Zhang J J, Li L Q, Zhang Y Z, Yu J G, Ran J R, Qiao S Z 2022 Adv. Energy Mater. 12 2201449Google Scholar
[18] Li Y, Fu J, Mao X Y, Chen C, Liu H, Gong M, Zeng H L 2021 Nat. Commun. 12 5896Google Scholar
[19] Chen C, Liu H, Lai Q L, Mao X Y, Fu J, Fu Z M, Zeng H L 2022 Nano Lett. 22 3275Google Scholar
[20] Wang X G, Xiong T, Zhao K, Zhou Z Q, Xin K Y, Deng H X, Kang J, Yang J H, Liu Y Y, Wei Z M 2022 Adv. Mater. 34 2107206Google Scholar
[21] Sun J, Heo J, Yun H 2015 Acta Cryst. 71 278Google Scholar
[22] Goh E Y, Kim S J, Jung D 2002 J. Solid State Chem. 168 119Google Scholar
[23] Camerel F, Gabriel J C P, Batail P, Davidson P, Lemaire B, Schmutz M, Gulik-Krzywicki T, Bourgaux C 2002 Nano Lett. 2 403Google Scholar
[24] Yu J, Yun H 2011 Acta Cryst. 67 i24Google Scholar
[25] Lee Y, Yoon W, Yun H 2014 Acta Cryst. 70 i8Google Scholar
[26] Xu X Q, Yang L, Zheng W, Zhang H, Wu F S, Tian Z H, Zhang P G, Sun Z M 2022 Mater. Rep. Energy 2 100080Google Scholar
[27] Choi K H, Oh S, Chae S, Jeong B J, Kim B J, Jeon J, Lee S H, Yoon S O, Woo C, Dong X, Ghulam A, Lim C, Liu Z, Wang C, Junaid A, Lee J H, Yu H K, Choi J Y 2021 J. Alloys Compd. 864 158811Google Scholar
[28] Zhao K, Yang J H, Zhong M Z, Gao Q, Wang Y, Wang X T, Shen W F, Hu C G, Wang K Y, Shen G Z, Li M, Wang J L, Hu W D, Wei Z M 2021 Adv. Funct. Mater. 31 2006601Google Scholar
[29] Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar
[30] Bang H, Kim Y, Kim S, Kim S J 2008 J. Solid State Chem. 181 1798Google Scholar
[31] Wang R J, Cui Q L, Zhu W, Niu Y J, Liu Z F, Zhang L, Wu X J, Chen S M, Song L 2022 Chin. Phys. B 31 096802Google Scholar
[32] Chen H P, Li Y, Wu H B, Peng Y, Fang Y, Chen C Z, Xie S P, Song L 2019 Solid State Commun. 289 56Google Scholar
[33] Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155Google Scholar
[34] Pimenta M A, Resende G C, Ribeiro H B, Carvalho B R 2021 Phys. Chem. Chem. Phys. 23 27103Google Scholar
Catalog
Metrics
- Abstract views: 3541
- PDF Downloads: 102
- Cited By: 0