- 
				In recent years, thermodynamics and phase transitions of black holes in extended phase space have been extensively studied. The results show that the original first law of thermodynamics needs revising and new phase transitions will appear. However, so far, Hawking tunneling radiation has not been widely studied in the extended phase space. In particular, whether the tunneling radiation probability changes at this time is still uncertain. This work focuses on this topic, that is, to calculate the specific value of the tunneling probability in the extended phase space and ascertains whether the results obtained in the normal phase space are consistent with those in the extended phase space. The methods used herein are described below. Taking Reissner-Nordstrom-AdS black holes with global monopole for example, the cosmological parameters are regarded as dynamic variables, which is different from previous treatment methods that regard them as constants and ignore their contributions to the tunneling probability. In particular, cosmological parameters are introduced and regarded as thermodynamic pressure when the tunneling probability is calculated, and their contribution to the tunneling probability is considered. In the work the tunneling process of mass particles is mainly studied. The outgoing particles are viewed as spherical de Broglie waves, and then the relative phase velocity and group velocity are calculated. The geodesic equation is obtained according to the relationship between the two velocities, and the tunneling probability is calculated from the geodesic equation. It is concluded that the results show that the tunneling probability of the ingoing particles is proportional to the difference in the Bekenstein-Hawking entropy of the black hole before and after the particles tunnel, and the radiation spectrum deviates from the pure thermal spectrum, which is exactly the same as the case that the cosmological parameters are treated as constants. This means that the tunneling probability of particles can be obtained in the extended phase space, and the tunneling process does not depend on thermodynamic parameters. In addition, it is found that although the global monopole affects the dynamical behavior and thermodynamic quantity of the particle, it does not affect the entropy change or tunneling rate. In other words, the conclusion that the tunneling probability in extended phase space is exactly the same as that in normal phase space does not depend on the space-time topology.- 
										Keywords:
										
- Hawking radiation /
- cosmology parameters /
- thermodynamic pressure /
- global monopole
 [1] Akiyama K, Alberdi A, Alef W, et al. 2019 Astrophys. J. Lett. 875 L1  Google Scholar Google Scholar[2] Hawking S W 1974 Nature 248 30  Google Scholar Google Scholar[3] Hawking S W 1975 Commun. Math. Phys. 43 199  Google Scholar Google Scholar[4] Christodoulou D 1970 Phys. Rev. Lett. 25 1596  Google Scholar Google Scholar[5] BardeenJ M 1970 Nature 226 64  Google Scholar Google Scholar[6] Bekenstein J D 1973 Phys. Rev. D 7 2333  Google Scholar Google Scholar[7] Damour T, Ruffini R 1976 Phys. Rev. D 14 332  Google Scholar Google Scholar[8] Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752  Google Scholar Google Scholar[9] York J W 1986 Phys. Rev. D 33 2091  Google Scholar Google Scholar[10] Whiting B F, York J W 1988 Phys. Rev. Lett. 61 1336  Google Scholar Google Scholar[11] Punsly B 1992 Phys. Rev. D 46 1288  Google Scholar Google Scholar[12] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 024007  Google Scholar Google Scholar[13] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303  Google Scholar Google Scholar[14] Han Y W, Zhang J Y 2010 Phys. Lett. B 692 74  Google Scholar Google Scholar[15] Han Y W, Chen G 2012 Phys. Lett. B 714 127  Google Scholar Google Scholar[16] ParikhM K, Wilczek F 2000 Phys. Rev. Lett. 85 5042  Google Scholar Google Scholar[17] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006  Google Scholar Google Scholar[18] Vagenas E C 2002 Phys. Lett. B 533 302  Google Scholar Google Scholar[19] Medved A J M 2002 Phys. Rev. D 66 124009  Google Scholar Google Scholar[20] Setare M R, Vagenas E C 2004 Phys. Lett. B 584 127  Google Scholar Google Scholar[21] Parikh M 2004 Int. J. Mod. Phys. D 13 2351  Google Scholar Google Scholar[22] Zhang J, Zhao Z 2005 Nucl. Phys. B 725 173  Google Scholar Google Scholar[23] Medved A J M, Vagenas E C 2005 Mod. Phys. Lett. A 20 2449  Google Scholar Google Scholar[24] Zhang J, Zhao Z 2011 Phys. Rev. D 83 064028  Google Scholar Google Scholar[25] 韩亦文 2005 物理学报 54 5018  Google Scholar Google ScholarHan Y W 2005 Acta Phys. Sin. 54 5018  Google Scholar Google Scholar[26] Han Y W 2005 Chin. Phys. Lett. 22 2769  Google Scholar Google Scholar[27] 张靖仪, 赵峥 2006 物理学报 55 3796  Google Scholar Google ScholarZhang J Y, Zhao Z 2006 Acta Phys. Sin. 55 3796  Google Scholar Google Scholar[28] Liu W 2006 Phys. Lett. B 634 541  Google Scholar Google Scholar[29] Han Y W 2007 Chin. Phys. 16 0923  Google Scholar Google Scholar[30] HanY W, Yang S Z 2007 Commun. Theor. Phys. 47 1145  Google Scholar Google Scholar[31] Jiang Q Q, Wu S Q 2006 Phys. Lett. B 635 151  Google Scholar Google Scholar[32] Jiang Q Q, Wu S Q, Cai X 2006 Phys. Rev. D 73 064003  Google Scholar Google Scholar[33] Jiang Q Q, Cai X 2009 JHEP 11 110  Google Scholar Google Scholar[34] Ding C, Wang M, Jing J 2009 Phys. Lett. B 676 99  Google Scholar Google Scholar[35] Zeng X X, Yang S Z 2009 Chin. Phys. B 18 462  Google Scholar Google Scholar[36] Christina S, Singh T I 2021 Gen Relativ Gravit 53 43  Google Scholar Google Scholar[37] Vishnulal C, Basak S, Das S 2021 Phys. Rev. D 104 104011  Google Scholar Google Scholar[38] Cai R G, Cao L M, Li L, Yang R Q 2013 JHEP2013 5  Google Scholar Google Scholar[39] Johnson C V 2014 Class. Quant. Grav. 31 205002  Google Scholar Google Scholar[40] Caceres E, Nguyen P H, Pedraza J F 2015 JHEP 2015 184  Google Scholar Google Scholar[41] Mandal A, Samanta S, Majhi B R 2016 Phys. Rev. D 94 064069  Google Scholar Google Scholar[42] Caldarelli M M, Cognola G, Klemm D 2000 Class. Quantum Grav. 17 399  Google Scholar Google Scholar[43] Hendi S H, Panahiyan S, EslamPanah B, Momennia M 2016 Ann. Phys. (Berlin) 528 819  Google Scholar Google Scholar[44] Kastor D, Ray S, Traschen J 2009 Class. Quant. Grav. 26 195011  Google Scholar Google Scholar[45] Kubizňák D, Mann R B 2012 JHEP 2012 33  Google Scholar Google Scholar[46] DolanB P 2011 Class. Quant. Grav. 28 125020  Google Scholar Google Scholar[47] Cvetič M, Gibbons G W, Kubizňák D 2011 Phys. Rev. D 84 024037  Google Scholar Google Scholar[48] Altamirano N, Kubizňák D, Mann R B 2013 Phys. Rev. D 88 101502  Google Scholar Google Scholar[49] Dolan B P, Kostouki A, Kubizňák D 2014 Class. Quant. Grav. 31 242001  Google Scholar Google Scholar[50] Hennigar R A, Mann R B, Tjoa E 2017 Phys. Rev. Lett. 118 021301  Google Scholar Google Scholar[51] Wei S W, Liu Y X, Mann R B 2019 Phys. Rev. Lett. 123 071103  Google Scholar Google Scholar[52] Zeng X X, Han Y W, Che D Y 2019 Chin. Phys. C 43 105104  Google Scholar Google Scholar[53] Han Y W, Zeng X X, Hong Y 2019 Eur. Phys. J. C 79 252  Google Scholar Google Scholar[54] Ren Z X, Zeng X X, Han Y W, Hu C 2023 Nucl. Phys. B 990 116153  Google Scholar Google Scholar[55] Barriola M, Vilenkin A 1989 Phys. Rev. Lett. 63 341  Google Scholar Google Scholar[56] Yu H W 1994 Nucl. Phys. B 430 427  Google Scholar Google Scholar[57] He A, Tao J, Wang P, Xue Y, Zhang L 2022 Eur. Phys. J. C 82 683  Google Scholar Google Scholar[58] Chen S, Wang L, Ding C, et al. 2010 Nucl. Phys. B 836 222  Google Scholar Google Scholar[59] 曾晓雄, 胡馨匀, 韩亦文, 刘显明 2015 中国科学: 物理学 力学 天文学 45 080401  Google Scholar Google ScholarZeng X X, Hu X Y, Han Y W, Liu X M 2015 Sci. China-Phys. Mech. Astron. 45 080401  Google Scholar Google Scholar[60] 周亮, 张靖仪 2010 物理学报 59 4380  Google Scholar Google ScholarZhou L, Zhang J Y 2010 Acta Phys. Sin. 59 4380  Google Scholar Google Scholar[61] Gao C J, Sen Y G 2002 Chin. Phys. Lett. 19 477  Google Scholar Google Scholar[62] Painlevé P 1921 Comptes Rendus Academie des Sciences (Serie Non Specifiee) 173 677 [63] Gullstrand A 1922 Arkiv. Mat. Astron. Fys. 16 15 
- 
				
[1] Akiyama K, Alberdi A, Alef W, et al. 2019 Astrophys. J. Lett. 875 L1  Google Scholar Google Scholar[2] Hawking S W 1974 Nature 248 30  Google Scholar Google Scholar[3] Hawking S W 1975 Commun. Math. Phys. 43 199  Google Scholar Google Scholar[4] Christodoulou D 1970 Phys. Rev. Lett. 25 1596  Google Scholar Google Scholar[5] BardeenJ M 1970 Nature 226 64  Google Scholar Google Scholar[6] Bekenstein J D 1973 Phys. Rev. D 7 2333  Google Scholar Google Scholar[7] Damour T, Ruffini R 1976 Phys. Rev. D 14 332  Google Scholar Google Scholar[8] Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752  Google Scholar Google Scholar[9] York J W 1986 Phys. Rev. D 33 2091  Google Scholar Google Scholar[10] Whiting B F, York J W 1988 Phys. Rev. Lett. 61 1336  Google Scholar Google Scholar[11] Punsly B 1992 Phys. Rev. D 46 1288  Google Scholar Google Scholar[12] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 024007  Google Scholar Google Scholar[13] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303  Google Scholar Google Scholar[14] Han Y W, Zhang J Y 2010 Phys. Lett. B 692 74  Google Scholar Google Scholar[15] Han Y W, Chen G 2012 Phys. Lett. B 714 127  Google Scholar Google Scholar[16] ParikhM K, Wilczek F 2000 Phys. Rev. Lett. 85 5042  Google Scholar Google Scholar[17] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006  Google Scholar Google Scholar[18] Vagenas E C 2002 Phys. Lett. B 533 302  Google Scholar Google Scholar[19] Medved A J M 2002 Phys. Rev. D 66 124009  Google Scholar Google Scholar[20] Setare M R, Vagenas E C 2004 Phys. Lett. B 584 127  Google Scholar Google Scholar[21] Parikh M 2004 Int. J. Mod. Phys. D 13 2351  Google Scholar Google Scholar[22] Zhang J, Zhao Z 2005 Nucl. Phys. B 725 173  Google Scholar Google Scholar[23] Medved A J M, Vagenas E C 2005 Mod. Phys. Lett. A 20 2449  Google Scholar Google Scholar[24] Zhang J, Zhao Z 2011 Phys. Rev. D 83 064028  Google Scholar Google Scholar[25] 韩亦文 2005 物理学报 54 5018  Google Scholar Google ScholarHan Y W 2005 Acta Phys. Sin. 54 5018  Google Scholar Google Scholar[26] Han Y W 2005 Chin. Phys. Lett. 22 2769  Google Scholar Google Scholar[27] 张靖仪, 赵峥 2006 物理学报 55 3796  Google Scholar Google ScholarZhang J Y, Zhao Z 2006 Acta Phys. Sin. 55 3796  Google Scholar Google Scholar[28] Liu W 2006 Phys. Lett. B 634 541  Google Scholar Google Scholar[29] Han Y W 2007 Chin. Phys. 16 0923  Google Scholar Google Scholar[30] HanY W, Yang S Z 2007 Commun. Theor. Phys. 47 1145  Google Scholar Google Scholar[31] Jiang Q Q, Wu S Q 2006 Phys. Lett. B 635 151  Google Scholar Google Scholar[32] Jiang Q Q, Wu S Q, Cai X 2006 Phys. Rev. D 73 064003  Google Scholar Google Scholar[33] Jiang Q Q, Cai X 2009 JHEP 11 110  Google Scholar Google Scholar[34] Ding C, Wang M, Jing J 2009 Phys. Lett. B 676 99  Google Scholar Google Scholar[35] Zeng X X, Yang S Z 2009 Chin. Phys. B 18 462  Google Scholar Google Scholar[36] Christina S, Singh T I 2021 Gen Relativ Gravit 53 43  Google Scholar Google Scholar[37] Vishnulal C, Basak S, Das S 2021 Phys. Rev. D 104 104011  Google Scholar Google Scholar[38] Cai R G, Cao L M, Li L, Yang R Q 2013 JHEP2013 5  Google Scholar Google Scholar[39] Johnson C V 2014 Class. Quant. Grav. 31 205002  Google Scholar Google Scholar[40] Caceres E, Nguyen P H, Pedraza J F 2015 JHEP 2015 184  Google Scholar Google Scholar[41] Mandal A, Samanta S, Majhi B R 2016 Phys. Rev. D 94 064069  Google Scholar Google Scholar[42] Caldarelli M M, Cognola G, Klemm D 2000 Class. Quantum Grav. 17 399  Google Scholar Google Scholar[43] Hendi S H, Panahiyan S, EslamPanah B, Momennia M 2016 Ann. Phys. (Berlin) 528 819  Google Scholar Google Scholar[44] Kastor D, Ray S, Traschen J 2009 Class. Quant. Grav. 26 195011  Google Scholar Google Scholar[45] Kubizňák D, Mann R B 2012 JHEP 2012 33  Google Scholar Google Scholar[46] DolanB P 2011 Class. Quant. Grav. 28 125020  Google Scholar Google Scholar[47] Cvetič M, Gibbons G W, Kubizňák D 2011 Phys. Rev. D 84 024037  Google Scholar Google Scholar[48] Altamirano N, Kubizňák D, Mann R B 2013 Phys. Rev. D 88 101502  Google Scholar Google Scholar[49] Dolan B P, Kostouki A, Kubizňák D 2014 Class. Quant. Grav. 31 242001  Google Scholar Google Scholar[50] Hennigar R A, Mann R B, Tjoa E 2017 Phys. Rev. Lett. 118 021301  Google Scholar Google Scholar[51] Wei S W, Liu Y X, Mann R B 2019 Phys. Rev. Lett. 123 071103  Google Scholar Google Scholar[52] Zeng X X, Han Y W, Che D Y 2019 Chin. Phys. C 43 105104  Google Scholar Google Scholar[53] Han Y W, Zeng X X, Hong Y 2019 Eur. Phys. J. C 79 252  Google Scholar Google Scholar[54] Ren Z X, Zeng X X, Han Y W, Hu C 2023 Nucl. Phys. B 990 116153  Google Scholar Google Scholar[55] Barriola M, Vilenkin A 1989 Phys. Rev. Lett. 63 341  Google Scholar Google Scholar[56] Yu H W 1994 Nucl. Phys. B 430 427  Google Scholar Google Scholar[57] He A, Tao J, Wang P, Xue Y, Zhang L 2022 Eur. Phys. J. C 82 683  Google Scholar Google Scholar[58] Chen S, Wang L, Ding C, et al. 2010 Nucl. Phys. B 836 222  Google Scholar Google Scholar[59] 曾晓雄, 胡馨匀, 韩亦文, 刘显明 2015 中国科学: 物理学 力学 天文学 45 080401  Google Scholar Google ScholarZeng X X, Hu X Y, Han Y W, Liu X M 2015 Sci. China-Phys. Mech. Astron. 45 080401  Google Scholar Google Scholar[60] 周亮, 张靖仪 2010 物理学报 59 4380  Google Scholar Google ScholarZhou L, Zhang J Y 2010 Acta Phys. Sin. 59 4380  Google Scholar Google Scholar[61] Gao C J, Sen Y G 2002 Chin. Phys. Lett. 19 477  Google Scholar Google Scholar[62] Painlevé P 1921 Comptes Rendus Academie des Sciences (Serie Non Specifiee) 173 677 [63] Gullstrand A 1922 Arkiv. Mat. Astron. Fys. 16 15 
Catalog
Metrics
- Abstract views: 3848
- PDF Downloads: 63
- Cited By: 0


 
					 
		         
	         
  
					 
												







 下载:
下载: 
				