-
In this paper, the Lorentz-violating scalar field equation is generalized in curved spacetime, and we find that the aether-like terms modify the scalar field equation, so that the effect can correct the properties near the event horizon of black hole spacetime. We then obtain the modified Hamilton-Jacobi equation by semi-classical approximation, and investigate the Hawking radiation and black hole thermodynamics in Schwarzschild black hole spacetime. The results show that the effects of aether-like terms increase the temperature of black hole, but reduce the entropy of black hole as
${{ u}^\alpha } = {\text{δ}}_t^\alpha {u^t}, {\text{δ}}_r^\alpha {u^r}$ . This work can help to understand the properties of Lorentz-violating in curved spacetime.-
Keywords:
- modified scalar field equation /
- Hawking radiation /
- Hamilton-Jacobi equation /
- correctional entropy
[1] Hawking S W 1974 Nature 248 30Google Scholar
[2] Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar
[3] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303Google Scholar
[4] Damoar T, Ruffini R 1976 Phys. Rev. D 14 332Google Scholar
[5] Sannan S 1988 Gen. Relativ. Gravitation 20 239Google Scholar
[6] Kraus P, Wilczek F 1995 Nucl. Phys. B 433 403Google Scholar
[7] Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042Google Scholar
[8] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006Google Scholar
[9] Jiang Q Q, Wu S Q, Cai X 2007 Phys. Rev. D 75 064029Google Scholar
[10] Iso S, Umetsu H, Wilczek F 2006 Phys. Rev. D 74 044017Google Scholar
[11] Medved A J M 2002 Phys. Rev. D 66 124009Google Scholar
[12] Parikh M K 2006 arXiv:hep-th/0402166
[13] Zhang J Y, Zhao Z 2006 Phys. Lett. B 638 110Google Scholar
[14] Akhmedov E T, Akhmedova V, Singleton D 2006 Phys. Lett. B 642 124Google Scholar
[15] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 24007Google Scholar
[16] Shankaranarayanan S, Padmanabhan T, Srinivasan K 2002 Classical Quantum Gravity 19 2671Google Scholar
[17] Kerner R, Mann R B 2008 Classical Quantum Gravity 25 095014Google Scholar
[18] Kerner R, Mann R B 2008 Phys. Lett. B 665 277Google Scholar
[19] Li R, Ren J R, Wei S W 2008 Classical Quantum Gravity 25 125016Google Scholar
[20] Chen D Y, Jiang Q Q, Zu X T 2008 Classical Quantum Gravity 25 205022Google Scholar
[21] Criscienzo R D, Vanzo L 2008 Europhys. Lett. 82 60001Google Scholar
[22] Li H L, Yang S Z, Zhou T J, Lin R 2008 Europhys. Lett. 84 20003Google Scholar
[23] Jiang Q Q 2008 Phys. Lett. B 666 517Google Scholar
[24] Lin K, Yang S Z 2009 Int. J. Theor. Phys. 48 2061Google Scholar
[25] Lin K, Yang S Z 2009 Phys. Rev. D 79 064035Google Scholar
[26] Lin K, Yang S Z 2009 Phys. Lett. B 674 127Google Scholar
[27] Lin K, Yang S Z 2011 Chin. Phys. B 20 110403Google Scholar
[28] Gomes M, Nascimento J R, Petrov A Yu, da Silva J A 2010 Phys. Rev. D 81 045018Google Scholar
[29] Cruz M B, Bezerra de Mello E R, Petrov A Yu 2017 Phys. Rev. D 96 045019Google Scholar
[30] Cruz M B, Bezerra de Mello E R, Petrov A Yu 2018 Mod. Phys. Lett. A 33 1850115Google Scholar
[31] Borges L H C, Ferrari A F, Barone F A 2018 arXiv:1809. 08883 [hep-th]
[32] Edwards B R, Kostelecky V A 2018 Phys. Lett. B 786 319Google Scholar
-
[1] Hawking S W 1974 Nature 248 30Google Scholar
[2] Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar
[3] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303Google Scholar
[4] Damoar T, Ruffini R 1976 Phys. Rev. D 14 332Google Scholar
[5] Sannan S 1988 Gen. Relativ. Gravitation 20 239Google Scholar
[6] Kraus P, Wilczek F 1995 Nucl. Phys. B 433 403Google Scholar
[7] Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042Google Scholar
[8] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006Google Scholar
[9] Jiang Q Q, Wu S Q, Cai X 2007 Phys. Rev. D 75 064029Google Scholar
[10] Iso S, Umetsu H, Wilczek F 2006 Phys. Rev. D 74 044017Google Scholar
[11] Medved A J M 2002 Phys. Rev. D 66 124009Google Scholar
[12] Parikh M K 2006 arXiv:hep-th/0402166
[13] Zhang J Y, Zhao Z 2006 Phys. Lett. B 638 110Google Scholar
[14] Akhmedov E T, Akhmedova V, Singleton D 2006 Phys. Lett. B 642 124Google Scholar
[15] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 24007Google Scholar
[16] Shankaranarayanan S, Padmanabhan T, Srinivasan K 2002 Classical Quantum Gravity 19 2671Google Scholar
[17] Kerner R, Mann R B 2008 Classical Quantum Gravity 25 095014Google Scholar
[18] Kerner R, Mann R B 2008 Phys. Lett. B 665 277Google Scholar
[19] Li R, Ren J R, Wei S W 2008 Classical Quantum Gravity 25 125016Google Scholar
[20] Chen D Y, Jiang Q Q, Zu X T 2008 Classical Quantum Gravity 25 205022Google Scholar
[21] Criscienzo R D, Vanzo L 2008 Europhys. Lett. 82 60001Google Scholar
[22] Li H L, Yang S Z, Zhou T J, Lin R 2008 Europhys. Lett. 84 20003Google Scholar
[23] Jiang Q Q 2008 Phys. Lett. B 666 517Google Scholar
[24] Lin K, Yang S Z 2009 Int. J. Theor. Phys. 48 2061Google Scholar
[25] Lin K, Yang S Z 2009 Phys. Rev. D 79 064035Google Scholar
[26] Lin K, Yang S Z 2009 Phys. Lett. B 674 127Google Scholar
[27] Lin K, Yang S Z 2011 Chin. Phys. B 20 110403Google Scholar
[28] Gomes M, Nascimento J R, Petrov A Yu, da Silva J A 2010 Phys. Rev. D 81 045018Google Scholar
[29] Cruz M B, Bezerra de Mello E R, Petrov A Yu 2017 Phys. Rev. D 96 045019Google Scholar
[30] Cruz M B, Bezerra de Mello E R, Petrov A Yu 2018 Mod. Phys. Lett. A 33 1850115Google Scholar
[31] Borges L H C, Ferrari A F, Barone F A 2018 arXiv:1809. 08883 [hep-th]
[32] Edwards B R, Kostelecky V A 2018 Phys. Lett. B 786 319Google Scholar
Catalog
Metrics
- Abstract views: 6390
- PDF Downloads: 43
- Cited By: 0