Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on transport process of 16 keV Cions in tapered glass capillary: Role of capillary tilt angles

Niu Shu-Tong Zhan Xin Hua Qiang Li Wen-Teng Zhou Li-Hua Yang Ting-Gui

Citation:

Study on transport process of 16 keV Cions in tapered glass capillary: Role of capillary tilt angles

Niu Shu-Tong, Zhan Xin, Hua Qiang, Li Wen-Teng, Zhou Li-Hua, Yang Ting-Gui
PDF
HTML
Get Citation
  • The tapered glass capillaries have been widely used in physics, biology, materials. The features of ions transmitted through the insulating tapered glass capillary manifest themselves mainly in the interaction between positive ions and tapered glass capillary, However, the transmission process of negative ions in tapered glass capillary has been studied scarcely so far.In the present study, we measure the properties of 16 keV C ions transmitted through the tapered glass capillary, such as the two-dimensional spectral distribution, the relative transmission rate, the centroid angle, the charge state purity and the full width at half maximum of the transmitted particles. As the tapered glass capillary tilt angle is equal to 0°, the transmitted particles are composed of three components, i.e. the core, the C of halo and the C0 of halo. As the tilt angle is 1°, the transmitted particles are composed of two components, i.e. C and C0. As the tilt angle is >1°, there is no core region, the transmitted particles are composed of two components, i.e. C and C0. No matter how the tilt angle changes, the centroid angles of core are always along the direction of the incident ions, independent of the tilt angels. And the centroid angles of transmitted C and C0 are always along the direction of the capillary axis. The transmission processes of 16 keV C ions in tapered glass capillary with different tilting angles are analyzed qualitatively. When the tilting angle is small (0°–1°), the C ions are directly traveling straight through the back cone hole of tapered glass capillary, which are mainly composed of C ions. When the tilt angle is large (>1°), the C ions cannot directly travel straight through the back cone hole of the tapered glass capillary, and the core region does not appear. Due to the guiding effect of the negative charges deposited on inner wall of tapered glass capillary, the transmitted C ions are located around the direction of the capillary axis. The tapered glass capillary has a focusing effect on the incident ions. This experiment covers the lack of the studies of low-energy negative ions transmitted through tapered capillary and helps to strengthen the understanding of the transmission process of low-energy ions transmitted through tapered capillary.
      Corresponding author: Niu Shu-Tong, niusht14@lzu.edu.cn
    [1]

    牛书通 2018 博士学位论文 (兰州: 兰州大学)

    Niu S T 2018 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [2]

    Steinbock L J, Otto O, Chimerel C, Gornall J, Keyser U F 2010 Nano Lett. 10 2493Google Scholar

    [3]

    Le´tant S E, van Buuren T W, Terminello L J 2004 Nano Lett. 4 1705Google Scholar

    [4]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [6]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [7]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902Google Scholar

    [8]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712Google Scholar

    [9]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901Google Scholar

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [12]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H , Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674Google Scholar

    [13]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [14]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913Google Scholar

    [15]

    Zhou C L, Simon M, Ikeda T, Guillous S, Iskandar W, Méry A, Rangama J, Lebius H, Benyagoub A, Grygiel C, Müller A, Döbeli M, Tanis J A, Cassimi A 2013 Phys. Rev. A 88 050901Google Scholar

    [16]

    Gruber E, Kowarik G, Ladening F, Waclawek J P, Aumayr F, Bereczky R J, Tőkési K, Gunacker P, Schweigler T, Lemell C, Burgdörfer J 2012 Phys. Rev. A 86 062901Google Scholar

    [17]

    Stolterfoht N, Gruber E, Allinger P, Wampl S, Wang Y Y, Simon M J, Aumayr F 2015 Phys. Rev. A 91 032705

    [18]

    Simon M J, Zhou C L, Döbeli M, Cassim A, Monnet I, Méry A , Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Müller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 330 11Google Scholar

    [19]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Instrum. Methods. Phys. Res., Sect. B 267 2381Google Scholar

    [20]

    Nebiki T, Yamamoto T, Narusawa T, Breese B H, Teo E J, Watt F 2003 J. Vac. Sci. Technol. 21 1671

    [21]

    Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2005 Phys. Rev. A 91 012714

    [22]

    Pan P, Niu S T, Song H Y, Chen X M, Shao J X 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 450 332Google Scholar

    [23]

    Song H Y, Yang Z S, Yu L F, Zhou D J, Zhou D W, Shao J X, Yang A X 2020 Eur. Phys. J. D 74 208Google Scholar

  • 图 1  实验装置示意图 (a) 使用锥形管轮廓图, 入口直径为580 μm; (b) 锥形出口情况, 直径为23 μm; (c) 倾斜角度为0°时的二维谱图

    Figure 1.  The schematic view of the setup for the ion transmission experiments: (a) The profile of tapered glass capillary with an inlet diameter of 580 μm and (b) the outlet with a diameter of 23 μm; (c) the typical two-dimensional spectrum of transmitted particles with 16 keV incident energy and with a tilt angel of 0°.

    图 2  16 keV C入射处于0°倾斜角的锥形管, 未加偏转电压时出射粒子的二维分布谱图 (a)以及在X轴方向上的投影分布情况(b)

    Figure 2.  The typical two-dimensional spectrum (a) and the projections in the X-axis direction of the transmitted particles (b) after 16 keV C transmitted through tapered glass capillary with a tilt angle of 0° with the 0 V defection bias.

    图 3  16 keV C入射处于0°倾斜角的锥形管, 偏转电压为300 V时出射粒子的二维分布谱图(a)以及在Y轴方向上的投影分布情况(b)

    Figure 3.  The typical two-dimensional spectrum (a) and the projections in the Y-axis direction of the transmitted particles (b) after 16 keV C transmitted through tapered glass capillary with a tilt angle of 0°with the 300 V defection bias.

    图 4  16 keV C入射处于0°倾斜角的锥形管时, 出射离子core区域中心角度分布(a)和半高宽(b)的演化情况

    Figure 4.  The evolution of the outgoing angle of core (a) and the FWHM of the transmitted particles (b) for 16 keV C transmitted through tapered glass capillary at the tilt angle of 0°.

    图 5  16 keV C入射处于0°倾斜角的锥形管时, 相对透射率(a)和C, C0占比(b)的演化情况

    Figure 5.  The evolution of the relatively transmission rate (a) and the fraction of the transmitted particles (b) for 16 keV C transmitted through tapered glass capillary at the tilt angle of 0°.

    图 6  16 keV C入射处于1°倾斜角的锥形管时, 偏转电压为200 V时出射粒子的二维分布谱图(a)以及在Y轴方向上的投影分布情况(b). 其中紫线表示锥形管倾斜方向, 为1°, 红线表示出射C0Y轴中心出射方向, 蓝线表示CY轴中心出射方向

    Figure 6.  The typical two-dimensional spectrum (a) and the projections in the Y-axis direction of the transmitted particles (b) after 16 keV C transmitted through tapered glass capillary with a tilt angle of 1° with the 200 V defection bias. The purple line indicates the tilt angle of the tapered glass capillary, the red line indicates the center direction of C0 ions, and the blue line indicates the center direction of C ions.

    图 7  16 keV C入射处于1°倾斜角的锥形管时, 中心出射角度方向(a)和半高宽(b)的演化情况

    Figure 7.  The evolution of the outgoing angle (a) and the FWHM of the transmitted particles (b) for 16 keV C transmitted through tapered glass capillary at the tilt angle of 1°.

    图 8  16 keV C入射处于1°倾斜角的锥形管时, 相对透射率(a)和C, C0占比(b)随的演化情况

    Figure 8.  The evolution of the relatively transmission rate (a) and the fraction of the transmitted particles (b) for 16 keV C transmitted through tapered glass capillary at the tilt angle of 0°.

    图 9  16 keV C入射处于不同倾斜角的锥形管时, 中心出射角度方向(a)和半高宽(b)随倾斜角度演化

    Figure 9.  The evolution of the outgoing angle (a) and the FWHM of the transmitted particles (b) at various tilt angles for 16 keV C transmitted through tapered glass capillary

    图 10  16 keV C 离子入射处于不同倾斜角的锥形管时, 相对透射率(a)和C, C0占比(b)随锥形管倾斜角度的演化

    Figure 10.  The evolution of the relatively transmission rate (a) and the fraction of the transmitted particles (b) at various tilt angles for 16 keV C transmitted through tapered glass capillary.

    图 11  16 keV C入射处于0°倾斜角的锥形管时, 入射离子在锥形管中的输运示意图

    Figure 11.  Simulated trajectories of transmitted particles for 16 keV C transmitted through tapered glass capillary at the tilt angle of 0°.

    图 12  16 keV的C离子入射倾斜角度等于1°的锥形玻璃管时, 入射离子在锥形玻璃管中的输运示意图

    Figure 12.  Simulated trajectories of transmitted particles for 16 keV C transmitted through tapered glass capillary at the tilt angle of 1°.

  • [1]

    牛书通 2018 博士学位论文 (兰州: 兰州大学)

    Niu S T 2018 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [2]

    Steinbock L J, Otto O, Chimerel C, Gornall J, Keyser U F 2010 Nano Lett. 10 2493Google Scholar

    [3]

    Le´tant S E, van Buuren T W, Terminello L J 2004 Nano Lett. 4 1705Google Scholar

    [4]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [6]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [7]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902Google Scholar

    [8]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712Google Scholar

    [9]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901Google Scholar

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [12]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H , Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674Google Scholar

    [13]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [14]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913Google Scholar

    [15]

    Zhou C L, Simon M, Ikeda T, Guillous S, Iskandar W, Méry A, Rangama J, Lebius H, Benyagoub A, Grygiel C, Müller A, Döbeli M, Tanis J A, Cassimi A 2013 Phys. Rev. A 88 050901Google Scholar

    [16]

    Gruber E, Kowarik G, Ladening F, Waclawek J P, Aumayr F, Bereczky R J, Tőkési K, Gunacker P, Schweigler T, Lemell C, Burgdörfer J 2012 Phys. Rev. A 86 062901Google Scholar

    [17]

    Stolterfoht N, Gruber E, Allinger P, Wampl S, Wang Y Y, Simon M J, Aumayr F 2015 Phys. Rev. A 91 032705

    [18]

    Simon M J, Zhou C L, Döbeli M, Cassim A, Monnet I, Méry A , Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Müller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 330 11Google Scholar

    [19]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Instrum. Methods. Phys. Res., Sect. B 267 2381Google Scholar

    [20]

    Nebiki T, Yamamoto T, Narusawa T, Breese B H, Teo E J, Watt F 2003 J. Vac. Sci. Technol. 21 1671

    [21]

    Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2005 Phys. Rev. A 91 012714

    [22]

    Pan P, Niu S T, Song H Y, Chen X M, Shao J X 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 450 332Google Scholar

    [23]

    Song H Y, Yang Z S, Yu L F, Zhou D J, Zhou D W, Shao J X, Yang A X 2020 Eur. Phys. J. D 74 208Google Scholar

  • [1] Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng. Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding. Acta Physica Sinica, 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [2] Wu Han-Yu, Zeng Zheng-Zhong, Qiu Meng-Tong, Zhang Xin-Jun, Guo Ning, Wei Hao. Electromagnetic particle-in-cell simulation of high-power single-hole post-hole convolute. Acta Physica Sinica, 2019, 68(17): 178401. doi: 10.7498/aps.68.20190535
    [3] Niu Shu-Tong, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Jin Yi-Lei, Yu Lou-Fei, Han Cheng-Zhi, Shao Jian-Xiong, Chen Xi-Meng. Experimental and theoritical research on the dynamical transmission of 30 keV H+ ions through polycarbonate nanocapillaries. Acta Physica Sinica, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [4] Chen Ying, Hu Hui-Fang, Wang Xiao-Wei, Zhang Zhao-Jin, Cheng Cai-Ping. Rectifying behaviors induced by B/N-doping in similar right triangle graphene devices. Acta Physica Sinica, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [5] He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [6] Yan Qian, Lu Cui-Min, Feng Dian-Wen, Yang Wei-Wei, Zhao Jie, Liu Qing-Suo, Ma Yong-Chang. Investigation of carrier transport properties along the c-axis in K0.8Fe2Se2 superconducting crystals. Acta Physica Sinica, 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [7] Li Shao-Sheng, Wang De-Hua. Photodetachment of H- near a deform sphere. Acta Physica Sinica, 2013, 62(4): 043201. doi: 10.7498/aps.62.043201
    [8] Zhao Sheng-Gui, Jin Ke-Xin, Luo Bing-Cheng, Wang Jian-Yuan, Chen Chang-Le. Photoinduced change in resistance of charge-ordering Gd0.55Sr0.45MnO3 thin film. Acta Physica Sinica, 2012, 61(4): 047501. doi: 10.7498/aps.61.047501
    [9] Wang Shu-Fang, Chen Shan-Shan, Chen Jing-Chun, Yan Guo-Ying, Qiao Xiao-Qi, Liu Fu-Qiang, Wang Jiang-Long, Ding Xue-Cheng, Fu Guang-Sheng. The effects of substrate temperature and oxygen pressure on the crystal strcture and transport properties of Bi2Sr2Co2Oy thermoelectric films deposited by pulsed laser deposition. Acta Physica Sinica, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [10] Tang Tian-Tian, Wang De-Hua, Huang Kai-Yun. Study of the photodetachment of H- in a microcavity. Acta Physica Sinica, 2011, 60(5): 053203. doi: 10.7498/aps.60.053203
    [11] Qiu Ming, Zhang Zhen-Hua, Deng Xiao-Qing. Analysis on transport sensitivity for a carbon atomic wire attached with side groups. Acta Physica Sinica, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [12] Li Gui-Qin. Transport properties of boron-carbon and boron-nitride quantum dot device. Acta Physica Sinica, 2010, 59(7): 4985-4988. doi: 10.7498/aps.59.4985
    [13] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Kong Tao, Hu Ying, Wang Xiao-Ping. The effect of terminal group on the electronic transport property of alkanethiol self-assembled monolayer. Acta Physica Sinica, 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [14] Wu Shi-Gang, Shao Jian-Da, Fan Zheng-Xiu. Negative-ion element impurities breakdown model. Acta Physica Sinica, 2006, 55(4): 1987-1990. doi: 10.7498/aps.55.1987
    [15] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [16] Guo Bao-Zeng, Gong Na, Shi Jian-Ying, Wang Zhi-Yu. Monte Carlo simulation of the hole transport properties for wurtzite GaN. Acta Physica Sinica, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [17] Wang Jian-Yuan, Chen Chang-Le, Gao Guo-Mian, Han Li-An, Jin Ke-Xin. Transport properties and photo-induced effect in La0.82Te0.18MnO3 thin film. Acta Physica Sinica, 2006, 55(12): 6617-6621. doi: 10.7498/aps.55.6617
    [18] Chen Qin, Li Tong-Cang, Shi Qin-Wei, Wang Xiao-Ping. Effects of open dangling end on the transport properties of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(8): 3962-3966. doi: 10.7498/aps.54.3962
    [19] Xiao Chun-Tao, Han Li-An, Xue De-Sheng, Zhao Jun-Hui, H.Kunkel, G.Williams. Magnetic and transport properties of perovskite La067Pb033MnO3. Acta Physica Sinica, 2003, 52(5): 1245-1249. doi: 10.7498/aps.52.1245
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  1744
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2023
  • Accepted Date:  01 December 2023
  • Available Online:  12 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回