Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding

Li Peng-Fei Yuan Hua Cheng Zi-Dong Qian Li-Bing Liu Zhong-Lin Jin Bo Ha Shuai Wan Cheng-Liang Cui Ying Ma Yue Yang Zhi-Hu Lu Di Reinhold Schuch Li Ming Zhang Hong-Qiang Chen Xi-Meng

Citation:

Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding

Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng
PDF
HTML
Get Citation
  • The electron microbeam is useful for modifying certain fragments of biomolecule. It is successful to apply the guiding effect to making the microbeam of positively charged particles by using single glass capillary. However, the mechanism for the electron transport through insulating capillaries is unclear. Meanwhile, previous researches show that there are oscillations of the transmission intensity of electrons with time in the glass capillaries with outer serface having no grounded conductive shielding, So, the application of glass capillary to making the microbeam of electrons is limited.In this paper, the transmission of 1.5 and 0.9 keV electrons through the glass capillary without/with the grounded conductive-coated outer surface are investigated, respectively. This study aims to understand the mechanism for low energy electron transport in the glass capillaries, and find the conditions for the steady transport of the electrons. Two-dimensional angular distribution of the transported electrons and its time evolution are measured. It is found that the intensity of the transported electrons with the incident energy through the glass capillaries for the glass capillaries without and with the grounded conductive-coated outer surface show the typical geometrical transmission characteristics. The time evolution of the 1.5- keV electron transport presents an extremely complex variation for the glass capillary without the grounded conductive-coated outer surface. The intensity first falls, then rises and finally oscillates around a certain mean value. Correspondingly, the angular distribution center experiences moving towards positive-negative-settlement. In comparison, the charge-up process of the 0.9 keV electron transport through the glass capillary with the grounded conductive-coated outer surface shows a relatively simple behavior. At first, the intensity declines rapidly with time. Then, it slowly rises till a certain value and stays steady subsequently. The angular distribution of transported electrons follows the intensity distribution in general, but with some delay. It quickly moves to negative direction then comes back to positive direction. Finally, it regresses extremely slowly and ends up around the tilt angle. To better understand the physics behind the observed phenomena, the simulation for the interaction of the electrons with SiO2 material is performed to obtain the possible deposited charge distribution by the CASINO code. Based on the analysis of the experimental results and the simulated charge deposition, the conditions for stabilizing the electron transport through glass capillary arepresented.
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn ; Chen Xi-Meng, chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1732269, 11805169), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2021-sp41), the Swedish Foundation for International Cooperation in Research and Higher Education (Grant No. IB2018-8071), and the Key Program of the State Administration of Foreign Experts, China.
    [1]

    Kumar A, Becker D, Adhikary A, Sevilla M D 2019 Int. J. Mol. Sci. 20 3998Google Scholar

    [2]

    Baccarelli I, Bald I, Gianturco F A, Illenberger E, Kopyra J 2011 Phys. Rep. 508 1Google Scholar

    [3]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [4]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [5]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [6]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [7]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [8]

    Hellhammer R, Pešic Z, Sobocinski P, Fink D, Bundesmann J, Stolterfoht N 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 233 213Google Scholar

    [9]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res., Sect. B 258 145Google Scholar

    [10]

    Chen Y F, C X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B 18 2739Google Scholar

    [11]

    Juhász Z, Sulik B, Biri S, Iván I, Tőkési K, Fekete É, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Víkor G, Takács E 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 321Google Scholar

    [12]

    Sahana M, Skog P, Vikor G, Kumar R R, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar

    [13]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [14]

    Juhász Z, Kovács S, Herczku P, Rácz R, Biri S, Rajta I, Gál G, Szilasi S, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 177Google Scholar

    [15]

    Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [16]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [17]

    Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [18]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [19]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 674Google Scholar

    [20]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 2381Google Scholar

    [21]

    Giglio E, Guillous S, Cassimi A, Zhang H, Nagy G, Töőkési K 2017 Phys. Rev. A 95 030702Google Scholar

    [22]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [23]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [24]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [25]

    Stolterfoht N, Tanis J 2018 Nucl. Instrum. Methods Phys. Res. , Sect. B 421 32Google Scholar

    [26]

    Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [27]

    Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 190Google Scholar

    [28]

    Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar

    [29]

    Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Instrum. Methods. Phys. Res. , Sect. B 298 1Google Scholar

    [30]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 317 105Google Scholar

    [31]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [32]

    Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar

    [33]

    Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar

    [34]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar

    [35]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Instrum. Methods Phys. Res., Sect. B 382 60Google Scholar

    [36]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高 志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [37]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [38]

    Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO, Version 3.3, https://www.gel.usherbrooke.ca/casino/index.html

    [39]

    Yang L, Da B, Tokesi K, Ding Z J 2021 Sci. Rep. 11 5954Google Scholar

  • 图 1  (a)实验设备示意图; (b)裸玻璃管和涂导电胶玻璃管的示意图

    Figure 1.  (a) Schematic drawing of the experimental setup. The tilt angle α between the axis of the glass capillary and the electron beam, the observation angles φ and θ relative to the direction of the electron beam are indicated; (b) schematic drawing of the glass capillary, bare (above), silver conductive paint brushed (below).

    图 2  1.5和0.9 keV电子分别穿越裸玻璃毛细管(a)和涂导电胶玻璃毛细管(b)的穿透率随倾角变化的分布曲线. 图中, 虚线之间的角度代表几何穿透角. 图(b)中, 红线是高斯拟合线

    Figure 2.  The steady-state values of the transmission rate as a function of the tilt angle for 1.5 keV electrons through bare glass capillary (a) and 0.9 keV electrons through conductive-coated glass capillary (b). The dash lines indicate the geometric transmission angle of 1.68º spread angle. The red solid line is a Gaussian fit curve of the measured 0.9 keV data.

    图 3  对倾角为–0.2°的裸玻璃毛细管(a), (b), (c)和涂导电胶的玻璃毛细管(d), (e), (f)的充电过程的测量. 图(a)和图(d)分别为1.5和0.9 keV电子的穿透率随时间演化曲线; 图(b)和图(e)分别为1.5和0.9 keV能量下的穿透电子在φ平面的投影中心随时间的演化曲线; 图(c)和图(f)为充电过程中选取的穿透电子的二维角分布图像; 每个图像分别对应图(a)和图(c)中画红圈的位置

    Figure 3.  Measurements of the charge-up process in the glass capillary at certain tilt angle (α = –0.2°). Investigations conducted with both electron energies of 1.5 and 0.9 keV. (a) and (d) show the measured time evolution of the transmission rates. (b) and (e) show the projection of the transmitted electron angular distribution on the φ-plane. (c) and (f) show the 2 D images of electron angular distribution at different stages during the charge-up process. Each image in Figure (c) and Figure (f) corresponds to a red circle as marked in Figure (a) and Figure (d), respectively.

    图 4  0.9 keV电子在入射角为7.1°时造成的空穴深度分布(a)和电子沉积深度分布(b); 1.5 keV的电子在入射角为5.5°时造成的空穴深度分布(c)和电子沉积深度分布(d). X 方向为毛细管轴向方向, X正向方向为入射电子具有最大动量的方向, (0, 0)位置为碰撞点

    Figure 4.  The holes distribution (a), (c) and deposited electrons distribution (b), (d) in depth for 0.9 keV electrons at tilt angle 7.1°(a), (b) and 1.5 keV electrons at tilt angle 5.5°(c), (d). The impact occurred at the (0, 0) point.

    图 5  无导电层(a)和有导电层(b)时, SiO2表面电场场强的演化示意图. 图中的数字代表演化的先后顺序

    Figure 5.  The evolution of the electronic field on the surface for the bare SiO2 (a) and conductive-coated SiO2 (b). The numbers in the figure stand for evolution sequences.

    图 6  充电过程中, 裸玻璃管((a)—(c))的和涂导电胶的玻璃管((d)—(f))的穿透电子在玻璃管内的轨迹示意图. 红色箭头线为电子轨迹

    Figure 6.  The diagrams for the trajectories of the transmitted electrons through the bare glass capillary ((a)–(c)) and the conductive-coated glass capillary ((d)–(f)) in the charging up process.

  • [1]

    Kumar A, Becker D, Adhikary A, Sevilla M D 2019 Int. J. Mol. Sci. 20 3998Google Scholar

    [2]

    Baccarelli I, Bald I, Gianturco F A, Illenberger E, Kopyra J 2011 Phys. Rep. 508 1Google Scholar

    [3]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [4]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [5]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [6]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [7]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [8]

    Hellhammer R, Pešic Z, Sobocinski P, Fink D, Bundesmann J, Stolterfoht N 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 233 213Google Scholar

    [9]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res., Sect. B 258 145Google Scholar

    [10]

    Chen Y F, C X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B 18 2739Google Scholar

    [11]

    Juhász Z, Sulik B, Biri S, Iván I, Tőkési K, Fekete É, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Víkor G, Takács E 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 321Google Scholar

    [12]

    Sahana M, Skog P, Vikor G, Kumar R R, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar

    [13]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [14]

    Juhász Z, Kovács S, Herczku P, Rácz R, Biri S, Rajta I, Gál G, Szilasi S, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 177Google Scholar

    [15]

    Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [16]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [17]

    Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [18]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [19]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 674Google Scholar

    [20]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 2381Google Scholar

    [21]

    Giglio E, Guillous S, Cassimi A, Zhang H, Nagy G, Töőkési K 2017 Phys. Rev. A 95 030702Google Scholar

    [22]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [23]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [24]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [25]

    Stolterfoht N, Tanis J 2018 Nucl. Instrum. Methods Phys. Res. , Sect. B 421 32Google Scholar

    [26]

    Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [27]

    Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 190Google Scholar

    [28]

    Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar

    [29]

    Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Instrum. Methods. Phys. Res. , Sect. B 298 1Google Scholar

    [30]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 317 105Google Scholar

    [31]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [32]

    Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar

    [33]

    Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar

    [34]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar

    [35]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Instrum. Methods Phys. Res., Sect. B 382 60Google Scholar

    [36]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高 志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [37]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [38]

    Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO, Version 3.3, https://www.gel.usherbrooke.ca/casino/index.html

    [39]

    Yang L, Da B, Tokesi K, Ding Z J 2021 Sci. Rep. 11 5954Google Scholar

  • [1] Hu Xiao-Chuan, Liu Yang-Xi, Chu Kun, Duan Chao-Feng. Effect of amorphous carbon film on secondary electron emission of metal. Acta Physica Sinica, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] Zhang Jian-Wei, Niu Ying, Yan Run-Qi, Zhang Rong-Qi, Cao Meng, Li Yong-Dong, Liu Chun-Liang, Zhang Jia-Wei. Analysis of effect of bulk vacancy defect on secondary electron emission characteristics of Al2O3. Acta Physica Sinica, 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [3] Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Zhang Hao-Wen, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of low energy electrons transmitting through straight glass capillary: Tilt angle dependence. Acta Physica Sinica, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [4] Chen Long, Sun Shao-Juan, Jiang Bo-Rui, Duan Ping, An Yu-Hao, Yang Ye-Hui. Characteristics of non-Maxwellian magnetized sheath with secondary electron emission. Acta Physica Sinica, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [5] Weng Ming, Xie Shao-Yi, Yin Ming, Cao Meng. Influence of secondary electron emission characteristic of dielectric materials on microwave breakdown. Acta Physica Sinica, 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [6] Dong Ye, Liu Qing-Xiang, Pang Jian, Zhou Hai-Jing, Dong Zhi-Wei. Influence of secondary electron yield of material on two-sided multipactor discharge in cavity. Acta Physica Sinica, 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [7] Li Yu-Kun, Chen Tao, Li Jin, Yang Zhi-Wen, Hu Xin, Deng Ke-Li, Cao Zhu-Rong. Calculation of CsI photocathode spectral response in 10-100 keV X-ray energy region. Acta Physica Sinica, 2018, 67(8): 085203. doi: 10.7498/aps.67.20180029
    [8] Zhang Zhan-Gang, Lei Zhi-Feng, Yue Long, Liu Yuan, He Yu-Juan, Peng Chao, Shi Qian, Huang Yun, En Yun-Fei. Single event upset characteristics and physical mechanism for nanometric SOI SRAM induced by space energetic ions. Acta Physica Sinica, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [9] Wan Cheng-Liang, Li Peng-Fei, Qian Li-Bing, Jin Bo, Song Guang-Yin, Gao Zhi-Min, Zhou Li-Hua, Zhang Qi, Song Zhang-Yong, Yang Zhi-Hu, Shao Jian-Xiong, Cui Ying, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of slow electrons transmitting through straight glass capillary and tapered glass capillary. Acta Physica Sinica, 2016, 65(20): 204103. doi: 10.7498/aps.65.204103
    [10] Li Shuang, Chang Chao, Wang Jian-Guo, Liu Yan-Sheng, Zhu Meng, Guo Le-Tian, Xie Jia-Ling. Suppression of secondary electron multipactor on dielectric surface in TM mode. Acta Physica Sinica, 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [11] Weng Ming, Hu Tian-Cun, Cao Meng, Xu Wei-Jun. Effects of electron incident angle on the secondary electron yield for polyimide. Acta Physica Sinica, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [12] Ye Ming, He Yong-Ning, Wang Rui, Hu Tian-Cun, Zhang Na, Yang Jing, Cui Wan-Zhao, Zhang Zhong-Bing. Suppression of secondary electron emission by micro-trapping structure surface. Acta Physica Sinica, 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [13] Song Qing-Qing, Wang Xin-Bo, Cui Wan-Zhao, Wang Zhi-Yu, Ran Li-Xin. Probabilistic analysis of the lateral diffusion of secondary electrons in multicarrier multipactor. Acta Physica Sinica, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [14] Li Yong-Dong, Yang Wen-Jin, Zhang Na, Cui Wan-Zhao, Liu Chun-Liang. A combined phenomenological model for secondary electron emission. Acta Physica Sinica, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [15] Yang Wen-Jin, Li Yong-Dong, Liu Chun-Liang. Model of secondary electron emission at high incident electron energy for metal. Acta Physica Sinica, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [16] Li Peng, Xu Zhou, Li Ming, Yang Xing-Fan. A Monte Carlo simulation of secondary electron transport in diamond. Acta Physica Sinica, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [17] Chang Tian-Hai, Zheng Jun-Rong. Monte-Carlo simulation of secondary electron emission from solid metal. Acta Physica Sinica, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [18] Duan Ping, Li Xi, E Peng, Qing Shao-Wei. Effect of magnetized secondary electron on the characteristics of sheath in Hall thruster. Acta Physica Sinica, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [19] Xia Hai-Hong, Zhang Zhong-Bing, Liu Lin-Yue, Ouyang Xiao-Ping, Chen Liang, Wang Qun-Shu, Wang Lan, Ma Yan-Liang, Pan Hong-Bo. Accurate measurements of high energy proton beam by secondary electron compensation. Acta Physica Sinica, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [20] Yu Da-Ren, Zhang Feng-Kui, Li Hong, Liu Hui. The effect of the oscillating sheath on the electron-wall collision frequency in Hall thruster. Acta Physica Sinica, 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
Metrics
  • Abstract views:  4802
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2021
  • Accepted Date:  27 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回