Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An efficient calculation method for particle transport problems based on neural network

Ma Rui-Yao Wang Xin Li Shu Yong Heng Shangguan Dan-Hua

Citation:

An efficient calculation method for particle transport problems based on neural network

Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua
PDF
HTML
Get Citation
  • Monte Carlo (MC) method is a powerful tool for solving particle transport problems. However, it is extremely time-consuming to obtain results that meet the specified statistical error requirements, especially for large-scale refined models. This paper focuses on improving the computational efficiency of neutron transport simulations. Specifically, this study presents a novel method of efficiently calculating neutron fixed source problems, which has many applications. This type of particle transport problem aims at obtaining a fixed target tally corresponding to different source distributions for fixed geometry and material. First, an efficient simulation is achieved by treating the source distribution as the input to a neural network, with the estimated target tally as the output. This neural network is trained with data from MC simulations of diverse source distributions, ensuring its reusability. Second, since the data acquisition is time consuming, the importance principle of MC method is utilized to efficiently generate training data. This method has been tested on several benchmark models. The relative errors resulting from neural networks are less than 5% and the times needed to obtain these results are negligible compared with those for original Monte Carlo simulations. In conclusion, in this work we propose a method to train neural networks, with MC simulation results containing importance data and we also use this network to accelerate the computation of neutron fixed source problems.
      Corresponding author: Shangguan Dan-Hua, sgdh@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12305173, 12375164, 12331010), the Joint Fund of the National Natural Science Foundation of China (Grant No. U2230208), and the Key Laboratory of Nuclear Data Foundation, China (Grant No. JCKY2022201C155).
    [1]

    Wu Y C 2017 Fusion Neutronics (Singapore: Springer Singapore) p21

    [2]

    邓力, 李刚 2019 粒子输运问题的蒙特卡罗模拟方法与应用 (北京: 科学出版社)

    Deng L, Li G 2019 Monte Carlo Simulation Methods and Applications for Particle Transport Problems (Beijing: Science Press

    [3]

    Shangguan D H, Yan W H, Wei J X, Gao Z M, Chen Y B, Ji Z C 2023 Nucl. Sci. Tech. 34 58Google Scholar

    [4]

    上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成 2022 物理学报 71 090501Google Scholar

    Shangguan D H, Yan W H, Wei J X, Gao Z M, Chen Y B, Ji Z C 2022 Acta. Phys. Sin. 71 090501Google Scholar

    [5]

    Martin W R 2012 Nucl. Eng. Technol. 44 151Google Scholar

    [6]

    Noh K, Lee D 2013 Proceedings of the KNS Fall Meeting, Gyeongju, Korea, 2013, October 23–25

    [7]

    Hassan M 2020 Int. J. Sci. Res. 9 913Google Scholar

    [8]

    Gul A 2016 Prog. Nucl. Energy 92 164Google Scholar

    [9]

    Huang Z P, Cao L Z, He Q M, Wu H C 2022 J. Nucl. Sci. Technol. 59 1375Google Scholar

    [10]

    García-Pareja S, Lallena A M, Salvat F 2021 Front. Phys. 9 633Google Scholar

    [11]

    Pooneh S, Mahdi S, Claudio T (Victor C Ed.) 2013 Theory and Applications of Monte Carlo Simulations (Rijeka: IntechOpen) pp152–172

    [12]

    Dubi A 1985 Transport Theor. Stat. 14 167Google Scholar

    [13]

    Dubi A 1985 Transport Theor. Stat 14 195Google Scholar

    [14]

    Booth T E, Hendricks J S 1984 Fusion Sci. Technol. 5 90Google Scholar

    [15]

    Davis A, Turner A 2011 Fusion Eng. Des. 86 2698Google Scholar

    [16]

    Wagner J C, Haghighat A 1998 Nucl. Sci. Eng. 128 186Google Scholar

    [17]

    Wagner J C, Peplow D E, Mosher S W 2014 Nucl. Sci. Eng. 176 37Google Scholar

    [18]

    Sun A K, Chen Z P, Li L M, Liu C W, Yu T 2022 Proceedings of the 23rd Pacific Basin Nuclear Conference Beijing, China, November 1–4, 2022 p821

    [19]

    Ramón J, Peña J 1995 Comput. Phys. Commun. 88 76Google Scholar

    [20]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [21]

    Schmidhuber J 2015 Neural Networks 61 85Google Scholar

    [22]

    Webb S 2018 Nature 554 555Google Scholar

    [23]

    田十方, 李彪 2023 物理学报 72 100202Google Scholar

    Tian S F, Li B 2023 Acta Phys. Sin. 72 100202Google Scholar

    [24]

    Xiao M J, Yu T C, Zhang Y S, Yong H 2023 Comput. Fluids 266 106025Google Scholar

    [25]

    Liu L, Liu S P, Xie H, Xiong F S, Yu T C, Xiao M J, Liu L F, Yong H 2024 J. Sci. Comput. 98 22Google Scholar

    [26]

    Xie H, Zhai C L, Liu L, Yong H 2022 arXiv: 2205.06658v1 [math. NA]

    [27]

    胡泽华, 应阳君, 永珩, 续瑞瑞 2023 原子能科学技术 57 812Google Scholar

    Hu Z H, Ying Y J, Yong H, Xu R R 2023 At. Energy Sci. Technol. 57 812Google Scholar

    [28]

    Lu H Y, Li C H, Chen B B, Li W, Qi Y, Meng Z Y 2022 Chin. Phys. Lett. 39 050701Google Scholar

    [29]

    Ma Y G, Pang L G, Wang R, Zhou K 2023 Chin. Phys. Lett. 40 122101Google Scholar

    [30]

    Sun K W, Wang F 2023 Chin. Phys. B 32 070705Google Scholar

    [31]

    武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋 2022 物理学报 71 148401Google Scholar

    Wu C C, Zhou P J, Wang J J, Li G, Hu S G, Yu Q, Liu Y 2022 Acta Phys. Sin. 71 148401Google Scholar

    [32]

    杨莹, 曹怀信 2023 物理学报 72 110301Google Scholar

    Yang Y, Cao H X 2023 Acta Phys. Sin. 72 110301Google Scholar

    [33]

    Berry J J, Gil-Delgado G G, Osborne A G S 2021 Ann. Nucl. Energy 160 108367Google Scholar

    [34]

    Cao P, Gan Q, Song J, Long P C, Wang F, Hu L Q, Wu Y C 2020 Ann. Nucl. Energy 138 107Google Scholar

    [35]

    Zhang G M, Song Y M, Zhang Z H, Yuan W W 2022 Ann. Nucl. Energy 175 109248Google Scholar

    [36]

    张海明, 张昊春 2022 现代应用物理 13 020209Google Scholar

    Zhang H M, Zhang H C 2022 Mod. Appl. Phys. 13 020209Google Scholar

    [37]

    林海鹏, 李国栋, 陈法国, 韩毅, 梁润成 2020 辐射防护 40 516

    Lin H P, Li G D, Chen F G, Han Y, Liang R C 2020 Radiat. Prot. 40 516

    [38]

    Osborne A, Dorville J, Romano P 2023 Energy AI 13 100247Google Scholar

    [39]

    Kim S H, Shin S G, Han S, Kim M H, Pyeon C H 2020 Prog. Nucl. Energy 119 103183Google Scholar

    [40]

    Zhou S K, Greenspan H, Davatzikos C, Duncan J S, Van Ginneken B, Madabhushi A, Prince J L, Rueckert D, Summers R M 2021 Proc. IEEE 109 820Google Scholar

    [41]

    Peng Z, Shan H M, Liu T Y, Pei X, Wang G, Xu X G 2019 IEEE Access 7 76680Google Scholar

    [42]

    Ma J H, Piao Z, Huang S, Duan X M, Qin G G, Zhou L H, Xu Y 2021 Photonics Res. 9 B45Google Scholar

    [43]

    Romano P K, Horelik N E, Herman B R, Nelson A G, Forget B, Smith K 2015 Ann. Nucl. Energy 82 90Google Scholar

    [44]

    Abadi M, Agarwal A, Barham P, et al. 2016 arXiv: 1603.04467 [cs. DC]

    [45]

    Kingma D P, Ba J L 2014 arXiv: 1412.6980 [cs. LG]

    [46]

    Kobayashi K, Sugimura N, Nagaya Y 2001 Prog. Nucl. Energy 39 119Google Scholar

    [47]

    Igor Z, Richard S 2001 Prog. Nucl. Energy 39 207Google Scholar

    [48]

    Remec I, Kam F B K 1998 H. B. Robinson-2 Pressure Vessel Benchmark Report (United States) p2

    [49]

    Roberto O 2020 Nucl. Eng. Technol. 52 2Google Scholar

  • 图 1  本文技术路线图

    Figure 1.  Study framework of this paper.

    图 2  用于代理加速MC模拟的神经网络结构

    Figure 2.  Data-driven neural network for Monte Carlo simulation.

    图 3  重要性结果和MC模拟结果对比(MC-MC计算结果, IMP-重要性原理计算结果)

    Figure 3.  Comparison of results of MC simulation and importance data (MC- results of Monte Carlo simulation, IMP- results of importance data).

    图 4  网络训练损失曲线 (a) 使用 1000 个MC模拟结果样本进行训练; (b) 结合重要性数据和MC结果进行训练

    Figure 4.  Network training loss curves: (a) Trained with 1000 results samples of MC simulation; (b) trained with a combination of importance data and MC results.

    图 5  Kobayashi-1模型几何示意图

    Figure 5.  Diagram of Kobayashi-1 benchmark

    图 6  Kobayashi-1模型不同探测器的网络预测偏差分布

    Figure 6.  Deviation distributions of predicted-results for different detectors by networks of Kobayashi-1.

    图 7  HBR-2模型几何结构示意图

    Figure 7.  Detector geometry diagram of HBR-2 benchmark.

    图 8  HBR-2模型不同探测器的网络预测偏差分布

    Figure 8.  Deviation distributions of predicted-results for different detectors by networks of HBR-2.

    表 1  简单模型相空间划分参数

    Table 1.  Phase space meshing parameters of the Fe model.

    变量 范围 网格尺寸 网格数目
    X/Y/Z –3—3 cm 0.2 cm 30
    E 9—10 MeV 0.2 MeV 10
    U 1.04—2.05 rad 0.2 rad 5
    W 1.04—2.05 rad 0.2 rad 5
    注: X/Y/Z 为相空间网格空间维度在X/Y/Z 方向坐标; E 为相空间网格能量维度坐标; U/W 为相空间网格角度维度在极角和方位角的坐标
    DownLoad: CSV

    表 2  Kobayashi模型相空间划分参数

    Table 2.  Phase space division parameters of Kobayashi benchmark.

    变量范围网格尺寸网格数目
    X/Y/Z–10.1—10.1 cm0.2 cm100
    E
    U0—1.57 rad0.79 rad11
    W0—1.57 rad0.79 rad11
    DownLoad: CSV

    表 3  Kobayashi模型不同探测器的网络预测结果

    Table 3.  Prediction results for different detectors by networks of Kobayashi-1.

    基准题 探测器
    位置/cm
    训练偏差 验证偏差 测试偏差
    Kobayashi-1-i (15, 15, 15) 0.0424 0.0458 0.0408
    (25, 25, 25) 0.0426 0.0431 0.0442
    (35, 35, 35) 0.0473 0.0478 0.0458
    (45, 45, 45) 0.0473 0.0483 0.0452
    Kobayashi-1-ii (15, 15, 15) 0.0392 0.0401 0.0387
    (25, 25, 25) 0.0394 0.0404 0.0364
    (35, 35, 35) 0.0402 0.0456 0.0443
    (45, 45, 45) 0.0413 0.0455 0.0425
    DownLoad: CSV

    表 4  Kobayashi-1模型不同探测器的网络预测偏差分布

    Table 4.  Deviation distributions of predicted-results for different detectors by networks of Kobayashi-1.

    基准题 探测器位置/cm 测试偏差
    均值 最大值 标准差 < 0.05比例*/%
    Kobayashi-1-i (15, 15, 15) 0.0408 0.152 0.0078 95.5
    (25, 25, 25) 0.0442 0.178 0.0116 94.2
    (35, 35, 35) 0.0458 0.214 0.0256 92.6
    (45, 45, 45) 0.0452 0.220 0.0250 92.2
    Kobayashi-1-ii (15, 15, 15) 0.0387 0.126 0.0106 96.2
    (25, 25, 25) 0.0364 0.211 0.0230 95.7
    (35, 35, 35) 0.0443 0.245 0.0288 93.4
    (45, 45, 45) 0.0425 0.253 0.0298 93.3
    注: *预测结果与真值相对偏差小于5%的样本占总测试样本量的比例
    DownLoad: CSV

    表 5  HBR-2模型不同探测器的网络预测结果

    Table 5.  Prediction results for different location detector networks of HBR-2 benchmark.

    探测器训练偏差验证偏差测试偏差
    0.04130.04020.0398
    0.04250.04120.0442
    DownLoad: CSV

    表 6  HBR-2模型不同探测器的网络预测偏差分布

    Table 6.  Deviation distributions of predicted-results for different detectors by networks of HBR-2.

    探测器 测试偏差
    均值 最大值 标准差 < 0.05比例*
    0.0398 0.0826 0.0096 92.3%
    0.0442 0.0965 0.0132 90.2%
    *预测结果与真值相对偏差小于5%的样本占总测试样本量的比例
    DownLoad: CSV
  • [1]

    Wu Y C 2017 Fusion Neutronics (Singapore: Springer Singapore) p21

    [2]

    邓力, 李刚 2019 粒子输运问题的蒙特卡罗模拟方法与应用 (北京: 科学出版社)

    Deng L, Li G 2019 Monte Carlo Simulation Methods and Applications for Particle Transport Problems (Beijing: Science Press

    [3]

    Shangguan D H, Yan W H, Wei J X, Gao Z M, Chen Y B, Ji Z C 2023 Nucl. Sci. Tech. 34 58Google Scholar

    [4]

    上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成 2022 物理学报 71 090501Google Scholar

    Shangguan D H, Yan W H, Wei J X, Gao Z M, Chen Y B, Ji Z C 2022 Acta. Phys. Sin. 71 090501Google Scholar

    [5]

    Martin W R 2012 Nucl. Eng. Technol. 44 151Google Scholar

    [6]

    Noh K, Lee D 2013 Proceedings of the KNS Fall Meeting, Gyeongju, Korea, 2013, October 23–25

    [7]

    Hassan M 2020 Int. J. Sci. Res. 9 913Google Scholar

    [8]

    Gul A 2016 Prog. Nucl. Energy 92 164Google Scholar

    [9]

    Huang Z P, Cao L Z, He Q M, Wu H C 2022 J. Nucl. Sci. Technol. 59 1375Google Scholar

    [10]

    García-Pareja S, Lallena A M, Salvat F 2021 Front. Phys. 9 633Google Scholar

    [11]

    Pooneh S, Mahdi S, Claudio T (Victor C Ed.) 2013 Theory and Applications of Monte Carlo Simulations (Rijeka: IntechOpen) pp152–172

    [12]

    Dubi A 1985 Transport Theor. Stat. 14 167Google Scholar

    [13]

    Dubi A 1985 Transport Theor. Stat 14 195Google Scholar

    [14]

    Booth T E, Hendricks J S 1984 Fusion Sci. Technol. 5 90Google Scholar

    [15]

    Davis A, Turner A 2011 Fusion Eng. Des. 86 2698Google Scholar

    [16]

    Wagner J C, Haghighat A 1998 Nucl. Sci. Eng. 128 186Google Scholar

    [17]

    Wagner J C, Peplow D E, Mosher S W 2014 Nucl. Sci. Eng. 176 37Google Scholar

    [18]

    Sun A K, Chen Z P, Li L M, Liu C W, Yu T 2022 Proceedings of the 23rd Pacific Basin Nuclear Conference Beijing, China, November 1–4, 2022 p821

    [19]

    Ramón J, Peña J 1995 Comput. Phys. Commun. 88 76Google Scholar

    [20]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [21]

    Schmidhuber J 2015 Neural Networks 61 85Google Scholar

    [22]

    Webb S 2018 Nature 554 555Google Scholar

    [23]

    田十方, 李彪 2023 物理学报 72 100202Google Scholar

    Tian S F, Li B 2023 Acta Phys. Sin. 72 100202Google Scholar

    [24]

    Xiao M J, Yu T C, Zhang Y S, Yong H 2023 Comput. Fluids 266 106025Google Scholar

    [25]

    Liu L, Liu S P, Xie H, Xiong F S, Yu T C, Xiao M J, Liu L F, Yong H 2024 J. Sci. Comput. 98 22Google Scholar

    [26]

    Xie H, Zhai C L, Liu L, Yong H 2022 arXiv: 2205.06658v1 [math. NA]

    [27]

    胡泽华, 应阳君, 永珩, 续瑞瑞 2023 原子能科学技术 57 812Google Scholar

    Hu Z H, Ying Y J, Yong H, Xu R R 2023 At. Energy Sci. Technol. 57 812Google Scholar

    [28]

    Lu H Y, Li C H, Chen B B, Li W, Qi Y, Meng Z Y 2022 Chin. Phys. Lett. 39 050701Google Scholar

    [29]

    Ma Y G, Pang L G, Wang R, Zhou K 2023 Chin. Phys. Lett. 40 122101Google Scholar

    [30]

    Sun K W, Wang F 2023 Chin. Phys. B 32 070705Google Scholar

    [31]

    武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋 2022 物理学报 71 148401Google Scholar

    Wu C C, Zhou P J, Wang J J, Li G, Hu S G, Yu Q, Liu Y 2022 Acta Phys. Sin. 71 148401Google Scholar

    [32]

    杨莹, 曹怀信 2023 物理学报 72 110301Google Scholar

    Yang Y, Cao H X 2023 Acta Phys. Sin. 72 110301Google Scholar

    [33]

    Berry J J, Gil-Delgado G G, Osborne A G S 2021 Ann. Nucl. Energy 160 108367Google Scholar

    [34]

    Cao P, Gan Q, Song J, Long P C, Wang F, Hu L Q, Wu Y C 2020 Ann. Nucl. Energy 138 107Google Scholar

    [35]

    Zhang G M, Song Y M, Zhang Z H, Yuan W W 2022 Ann. Nucl. Energy 175 109248Google Scholar

    [36]

    张海明, 张昊春 2022 现代应用物理 13 020209Google Scholar

    Zhang H M, Zhang H C 2022 Mod. Appl. Phys. 13 020209Google Scholar

    [37]

    林海鹏, 李国栋, 陈法国, 韩毅, 梁润成 2020 辐射防护 40 516

    Lin H P, Li G D, Chen F G, Han Y, Liang R C 2020 Radiat. Prot. 40 516

    [38]

    Osborne A, Dorville J, Romano P 2023 Energy AI 13 100247Google Scholar

    [39]

    Kim S H, Shin S G, Han S, Kim M H, Pyeon C H 2020 Prog. Nucl. Energy 119 103183Google Scholar

    [40]

    Zhou S K, Greenspan H, Davatzikos C, Duncan J S, Van Ginneken B, Madabhushi A, Prince J L, Rueckert D, Summers R M 2021 Proc. IEEE 109 820Google Scholar

    [41]

    Peng Z, Shan H M, Liu T Y, Pei X, Wang G, Xu X G 2019 IEEE Access 7 76680Google Scholar

    [42]

    Ma J H, Piao Z, Huang S, Duan X M, Qin G G, Zhou L H, Xu Y 2021 Photonics Res. 9 B45Google Scholar

    [43]

    Romano P K, Horelik N E, Herman B R, Nelson A G, Forget B, Smith K 2015 Ann. Nucl. Energy 82 90Google Scholar

    [44]

    Abadi M, Agarwal A, Barham P, et al. 2016 arXiv: 1603.04467 [cs. DC]

    [45]

    Kingma D P, Ba J L 2014 arXiv: 1412.6980 [cs. LG]

    [46]

    Kobayashi K, Sugimura N, Nagaya Y 2001 Prog. Nucl. Energy 39 119Google Scholar

    [47]

    Igor Z, Richard S 2001 Prog. Nucl. Energy 39 207Google Scholar

    [48]

    Remec I, Kam F B K 1998 H. B. Robinson-2 Pressure Vessel Benchmark Report (United States) p2

    [49]

    Roberto O 2020 Nucl. Eng. Technol. 52 2Google Scholar

  • [1] Zhang Xian, Liu Shi-Chang, Wei Jun-Xia, Li Shu, Wang Xin, Shangguan Dan-Hua. Monte Carlo global variance reduction method combining source bias and weight window. Acta Physica Sinica, 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [2] Fang Bo-Lang, Wu Jun-Jie, Wang Sheng, Wu Zhen-Jie, Li Tian-Zhi, Zhang Yang, Yang Peng-Ling, Wang Jian-Guo. Measurement method of metal surface absorptivity based on physics-informed neural network. Acta Physica Sinica, 2024, 73(9): 094301. doi: 10.7498/aps.73.20231453
    [3] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [4] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [5] Li Jing, Sun Hao. Tag Z boson jets via convolutional neural networks. Acta Physica Sinica, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [6] Zheng Tian-Yun, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. High-order natural transition simulation method based on deep residual network. Acta Physica Sinica, 2020, 69(20): 204701. doi: 10.7498/aps.69.20200563
    [7] Shangguan Dan-Hua, Deng Li, Zhang Bao-Yin, Ji Zhi-Cheng, Li Gang. Efficient method of calculating Shannon entropy of non-static transport problem in message passing parallel programming environment. Acta Physica Sinica, 2016, 65(14): 142801. doi: 10.7498/aps.65.142801
    [8] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [9] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [10] Wen De-Zhi, Zhuo Ren-Hong, Ding Da-Jie, Zheng Hui, Cheng Jing, Li Zheng-Hong. Generation of correlated pseudorandom variables in Monte Carlo simulation. Acta Physica Sinica, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [11] Li Peng, Xu Zhou, Li Ming, Yang Xing-Fan. A Monte Carlo simulation of secondary electron transport in diamond. Acta Physica Sinica, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [12] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [13] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [14] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [15] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [16] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [17] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  2218
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2023
  • Accepted Date:  02 February 2024
  • Available Online:  06 February 2024
  • Published Online:  05 April 2024

/

返回文章
返回