Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical-hidden-visual-cryptography-based spoofing tracking system

Wu Cheng-Zhe Liu Rui-Ze Shi Yi-Shi

Citation:

Optical-hidden-visual-cryptography-based spoofing tracking system

Wu Cheng-Zhe, Liu Rui-Ze, Shi Yi-Shi
PDF
HTML
Get Citation
  • A deception tracking system based on optical hidden visual code is proposed. The system uses visual cryptography to decompose the secret image into a number of realistic masked images, which can be used to conceal the secret information. One of the masked images is embedded with a fragile watermark to ensure that it is not modified. This image serves as an inspection key to verify the other images, and the inspection key is transmitted separately. The rest of the camouflaged image is hidden in the phase key using the phase recovery algorithm, which ensures good invisibility during transmission. If the pixel arrangement of the masked image is tampered with by a dishonest participant, it is called a fraudulent image. Each phase key is distributed to different participants to ensure that the corresponding deceiver can be identified when the spoofing image is traced. In the extraction process, only the diffraction transformation of the phase key is needed to obtain the mask image. During the inspection, the inspection key is incoherently superimposed with any masked image, and the appearance of the verification image indicates whether the masked image has been tampered with, thereby achieving the purpose of deception tracking. The secret image can be obtained by incoherently superimposing the masking images, provided that the number of superimposed masking images is is greater than or equal to the threshold k, along with the inspection key. When the inspection key is superimposed with any masked image, if there is a spoofed image, no verification image will appear, and as a result, the secret image will not be restored. If there is no spoofed image, the verification image will appear, indicating that the secret image can be restored by covering all the images. The system can be used to track internal fraudsters when actual information is transmitted through invisible visual cryptography.
      Corresponding author: Shi Yi-Shi, shiyishi@ucas.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3602604), the National Natural Science Foundation of China (Grant Nos. 62131011, 62075221, 61975205), the Fusion Foundation of Research and Education of Chinese Academy of Sciences, University of Chinese Academy of Sciences, and the Fundamental Research Funds for the Central Universities of China.
    [1]

    Khan M, Shah T 2014 3D Research 5 29Google Scholar

    [2]

    Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6 120Google Scholar

    [3]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57 327Google Scholar

    [4]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [5]

    Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542Google Scholar

    [6]

    杨玉花, 史祎诗, 王雅丽, 肖俊, 张静娟 2011 物理学报 60 034202Google Scholar

    Yang Y H, Shi Y S, Wang Y L, Xiao J, Zhang J J 2011 Acta Phys. Sin. 60 034202Google Scholar

    [7]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425Google Scholar

    [8]

    Gao Q H, Wang Y L, Li T, Shi Y S 2014 Appl. Optics 53 4700Google Scholar

    [9]

    刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 物理学报 64 234201Google Scholar

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201Google Scholar

    [10]

    Chanana A, Paulsen A, Guruswamy S, Nahata A 2016 Optica 3 1466Google Scholar

    [11]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 物理学报 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta Phys. Sin. 68 110502Google Scholar

    [12]

    王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影 2019 物理学报 68 240503Google Scholar

    Wang X G, Li M, Yu N N, Xi S X, Wang X L, Lang L Y 2019 Acta Phys. Sin. 68 240503Google Scholar

    [13]

    Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar

    [14]

    Wu H C, Chang C C 2005 Comput. Stand. Interfaces 28 123Google Scholar

    [15]

    Feng J B, Wu H C, Tsai C S, Chang Y F, Chu Y P 2008 Pattern Recognit. 41 3572Google Scholar

    [16]

    Mishra A, Gupta A 2018 J. Inf. Optim. Sci. 39 631

    [17]

    Blundo C, Cimato S, Santis A D 2006 Theor. Comput. Sci. 369 169Google Scholar

    [18]

    Chen Y F, Chan Y K, Huang C C, Tsai M H, Chu Y P 2007 Inf. Sci. 177 4696Google Scholar

    [19]

    于韬, 杨栋宇, 马锐, 史祎诗 2020 物理学报 69 144202Google Scholar

    Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin. 69 144202Google Scholar

    [20]

    周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗 2021 物理学报 70 244201Google Scholar

    Zhou X L, Zhu Y P, Yang D Y, Zhang J H, Lu Z, Wang H Y, Dong Z, Ke C J, Shi Y S 2021 Acta Phys. Sin. 70 244201Google Scholar

    [21]

    Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar

    [22]

    Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar

    [23]

    Yang N, Gao Q K, Shi Y S 2018 Opt. Express 26 31995Google Scholar

    [24]

    Li Z F, Dong G Y, Yang D Y, Li G L, Shi Y S, Bi K, Zhou J 2019 Opt. Express 27 19212Google Scholar

    [25]

    郁滨, 付正欣, 沈刚, 房礼国 2014 视觉密码 (合肥: 中国科学技术大学出版社) 第69页

    Yu B, Fu Z X, Shen G, Fang L G 2014 Visual Cryptography (Vol. 1) (Hefei: University of Science and Technology of China Press) p69

  • 图 1  再现、检验、恢复过程

    Figure 1.  Reproducing, verifying, and restoring process.

    图 2  分解、隐藏、嵌入脆弱水印过程

    Figure 2.  Decomposition, hiding, embedding fragile watermarking process.

    图 3  当秘密图像、验证图像、掩饰图像相同位置的像素均为白色时的编码方案

    Figure 3.  Encoding scheme when the pixels in the same position of secret image, verification image, and masking image pixels are all white.

    图 4  GS算法流程

    Figure 4.  GS algorithm flow.

    图 5  嵌入脆弱水印流程

    Figure 5.  Fragile watermark embedding process.

    图 6  提取脆弱水印图像流程

    Figure 6.  Process of extracting fragile watermark image.

    图 7  欺骗追踪过程 (a) 检验密钥; (b) 被篡改像素排列顺序的欺骗图像; (c) 从相位密钥恢复的掩饰图像; (d) 检验密钥与欺骗图像叠加结果; (e) 检验密钥与掩饰图像叠加结果; (f) 无法恢复秘密图像的结果

    Figure 7.  Spoofing tracking process: (a) Test key; (b) spoofing images with altered pixel arrangement order; (c) masking image recovered from phase key; (d) test key and spoofing image superposition result; (e) test key and masking image superposition result; (f) failure to recover secret image.

    图 8  脆弱水印功能验证 (a) 宿主图像; (b) 水印图像; (c) 嵌入脆弱水印的宿主图像; (d) 提取水印图像; (e) 0.01椒盐噪声攻击提取的水印; (f) 0.01高斯噪声攻击提取的水印; (g) 图像压缩后提取的水印; (h) 10×10像素裁剪攻击后提取的水印

    Figure 8.  Fragile watermarking function verification: (a) Host image; (b) watermarked image; (c) host image embedded with fragile watermark; (d) extract watermark image; (e) watermark extracted by 0.01 salt and pepper noise attack; (f) watermark extracted by 0.01 Gaussian noise attack; (g) watermark extracted after image compression; (h) watermark extracted after 10×10 pixel cropping attack.

    图 9  获得秘密图像的过程 (a) 检验密钥; (b)从相位密钥恢复出的掩饰图像1; (c)从相位密钥恢复出的掩饰图像2; (d) 检验密钥和掩饰图像1叠加得到的验证图像; (e) 检验密钥和掩饰图像2叠加得到的验证图像; (f) 3张图像叠加恢复的秘密图像

    Figure 9.  Process of obtaining secret image: (a) Test key; (b) masking image 1 recovered from phase key; (c) masking image 2 recovered from phase key; (d) the verification image obtained by superimposing the test key and the masking image 1; (e) verification images obtained by superimposing the test key and masking image 2; (f) the secret image recovered by superimposing three images.

    图 10  (a)—(f)分别为14, 16, 18, 20, 24, 30像素大小的字符图像信息

    Figure 10.  (a)–(f) The character images information with the size of 14, 16, 18, 20, 24 and 30 pixels respectively.

    图 11  对掩饰图像进行加噪声处理后秘密图像的相关系数曲线

    Figure 11.  Correlation coefficient curves of secret images after noise processing of masking image.

  • [1]

    Khan M, Shah T 2014 3D Research 5 29Google Scholar

    [2]

    Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6 120Google Scholar

    [3]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57 327Google Scholar

    [4]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [5]

    Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542Google Scholar

    [6]

    杨玉花, 史祎诗, 王雅丽, 肖俊, 张静娟 2011 物理学报 60 034202Google Scholar

    Yang Y H, Shi Y S, Wang Y L, Xiao J, Zhang J J 2011 Acta Phys. Sin. 60 034202Google Scholar

    [7]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425Google Scholar

    [8]

    Gao Q H, Wang Y L, Li T, Shi Y S 2014 Appl. Optics 53 4700Google Scholar

    [9]

    刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 物理学报 64 234201Google Scholar

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201Google Scholar

    [10]

    Chanana A, Paulsen A, Guruswamy S, Nahata A 2016 Optica 3 1466Google Scholar

    [11]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 物理学报 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta Phys. Sin. 68 110502Google Scholar

    [12]

    王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影 2019 物理学报 68 240503Google Scholar

    Wang X G, Li M, Yu N N, Xi S X, Wang X L, Lang L Y 2019 Acta Phys. Sin. 68 240503Google Scholar

    [13]

    Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar

    [14]

    Wu H C, Chang C C 2005 Comput. Stand. Interfaces 28 123Google Scholar

    [15]

    Feng J B, Wu H C, Tsai C S, Chang Y F, Chu Y P 2008 Pattern Recognit. 41 3572Google Scholar

    [16]

    Mishra A, Gupta A 2018 J. Inf. Optim. Sci. 39 631

    [17]

    Blundo C, Cimato S, Santis A D 2006 Theor. Comput. Sci. 369 169Google Scholar

    [18]

    Chen Y F, Chan Y K, Huang C C, Tsai M H, Chu Y P 2007 Inf. Sci. 177 4696Google Scholar

    [19]

    于韬, 杨栋宇, 马锐, 史祎诗 2020 物理学报 69 144202Google Scholar

    Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin. 69 144202Google Scholar

    [20]

    周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗 2021 物理学报 70 244201Google Scholar

    Zhou X L, Zhu Y P, Yang D Y, Zhang J H, Lu Z, Wang H Y, Dong Z, Ke C J, Shi Y S 2021 Acta Phys. Sin. 70 244201Google Scholar

    [21]

    Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar

    [22]

    Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar

    [23]

    Yang N, Gao Q K, Shi Y S 2018 Opt. Express 26 31995Google Scholar

    [24]

    Li Z F, Dong G Y, Yang D Y, Li G L, Shi Y S, Bi K, Zhou J 2019 Opt. Express 27 19212Google Scholar

    [25]

    郁滨, 付正欣, 沈刚, 房礼国 2014 视觉密码 (合肥: 中国科学技术大学出版社) 第69页

    Yu B, Fu Z X, Shen G, Fang L G 2014 Visual Cryptography (Vol. 1) (Hefei: University of Science and Technology of China Press) p69

  • [1] Sun Xiao-Cong, Li Wei, Wang Ya-Jun, Zheng Yao-Hui. Quantum-enhanced optical phase tracking via squeezed state. Acta Physica Sinica, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [2] Liu Rui-Ze, Zhu Yu-Peng, Zhou Xin-Long, Mi Zhao-Ke, Wu Cheng-Zhe, Qin Qiao-Hua, Ke Chang-Jun, Shi Yi-Shi. Optical color fragile watermark based on pixel-free expansion visual cryptography. Acta Physica Sinica, 2024, 73(13): 134202. doi: 10.7498/aps.73.20231652
    [3] Gao Yue, Yu Bo-Cheng, Guo Rui, Cao Yan-Yan, Xu Ya-Dong. Optical meta-cage based on phase gradient metagrating. Acta Physica Sinica, 2023, 72(2): 024209. doi: 10.7498/aps.72.20221696
    [4] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Asymmetric channel phase matching quantum key distribution. Acta Physica Sinica, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [5] Zhou Xin-Long, Zhu Yu-Peng, Yang Dong-Yu, Zhang Jun-Hao, Lu Zhe, Wang Hua-Ying, Dong Zhao, Ke Chang-Jun, Shi Yi-Shi. Optical fragile watermarking based on visual cryptography and QR code. Acta Physica Sinica, 2021, 70(24): 244201. doi: 10.7498/aps.70.20210964
    [6] Yu Tao, Yang Dong-Yu, Ma Rui, Zhu Yu-Peng, Shi Yi-Shi. Enhanced-visual-cryptography-based optical information hiding system. Acta Physica Sinica, 2020, 69(14): 144202. doi: 10.7498/aps.69.20200496
    [7] Wang Ren-De, Zhang Ya-Ping, Zhu Xu-Feng, Wang Fan, Li Chong-Guang, Zhang Yong-An, Xu Wei. Multi-section images parallel encryption based on optical scanning holographic cryptography technology. Acta Physica Sinica, 2019, 68(11): 114202. doi: 10.7498/aps.68.20190162
    [8] An Xue-Bi, Yin Zhen-Qiang, Han Zheng-Fu. Macro-micro entanglement in optical system and its application in quantum key distribution. Acta Physica Sinica, 2015, 64(14): 140303. doi: 10.7498/aps.64.140303
    [9] Yu Bin, Li Heng, Chen Dan-Ni, Niu Han-Ben. Design, fabrication, and experimental demonstration of a diffractive optical element with long depth of field for nanoscale three-dimensional multi-molecule tracking. Acta Physica Sinica, 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [10] Li Xia, Zhang Lei. Analysis of aerosol sources and optical properties based on backward trajectory method over SACOL. Acta Physica Sinica, 2012, 61(2): 023402. doi: 10.7498/aps.61.023402
    [11] Fan De-Sheng, Meng Xiang-Feng, Yang Xiu-Lun, Wang Yu-Rong, Peng Xiang, He Wen-Qi. Software realization of optical information hiding system based on phase-shifting interferometry. Acta Physica Sinica, 2012, 61(24): 244204. doi: 10.7498/aps.61.244204
    [12] Wang Jin-Dong, Wei Zheng-Jun, Zhang Hui, Zhang Hua-Ni, Chen Shuai, Qin Xiao-Juan, Guo Jian-Ping, Liao Chang-Jun, Liu Song-Hao. The influence of the time delay through long trunk fiber on the phase-coding quantum key distribution system. Acta Physica Sinica, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [13] Wang Jin-Dong, Qin Xiao-Juan, Wei Zheng-Jun, Liu Xiao-Bao, Liao Chang-Jun, Liu Song-Hao. An effective active phase compensation method for quantum key distribution system. Acta Physica Sinica, 2010, 59(1): 281-286. doi: 10.7498/aps.59.281
    [14] Zhang Jing, Wang Fa-Qiang, Zhao Feng, Lu Yi-Qun, Liu Song-Hao. Quantum key distribution based on time coding and phase coding. Acta Physica Sinica, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [15] Guo Bang-Hong, Lu Yi-Qun, Wang Fa-Qiang, Zhao Feng, Hu Min, Lin Yi-Man, Liao Chang-Jun, Liu Song-Hao. Real-time low-frequency vibration phase drift tracking and auto-compensation in phase-coded quantum key distribution system. Acta Physica Sinica, 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [16] Zhao Feng, Lu Yi-Qun, Wang Fa-Qiang, Chen Xia, Li Ming-Ming, Guo Bang-Hong, Liao Chang-Jun, Liu Song-Hao. Stable differential-phase-shift quantum key distribution based on weak coherent pulses. Acta Physica Sinica, 2007, 56(4): 2175-2179. doi: 10.7498/aps.56.2175
    [17] Lin Qing-Qun, Wang Fa-Qiang, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. Deterministic quantum key distribution based on random phase coding. Acta Physica Sinica, 2007, 56(10): 5796-5801. doi: 10.7498/aps.56.5796
    [18] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [19] Li Ming-Ming, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Chen Xia, Liang Rui-Sheng, Liu Song-Hao. A highly stable differential phase shift key distribution QKD system. Acta Physica Sinica, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [20] Miao Er-Long, Mo Xiao-Fan, Gui You-Zhen, Han Zheng-Fu, Guo Guang-Can. Phase-modulated free space quantum key distribution. Acta Physica Sinica, 2004, 53(7): 2123-2126. doi: 10.7498/aps.53.2123
Metrics
  • Abstract views:  1195
  • PDF Downloads:  33
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2023
  • Accepted Date:  15 May 2024
  • Available Online:  18 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回