Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatially oriented correlated emission based on selective drive of diatomic superradiance states

Zhang Jie Chen Ai-Xi Peng Ze-An

Citation:

Spatially oriented correlated emission based on selective drive of diatomic superradiance states

Zhang Jie, Chen Ai-Xi, Peng Ze-An
PDF
HTML
Get Citation
  • In recent years, the radiative properties of atomic systems have been a hot topic in the research fields of quantum optics and quantum information. With the continuous development of nanophotonics, quantum antennas have become an important model for studying atomic radiation. In order to investigate these phenomena in depth, we investigate a system composed of two two-level atoms, and study the two-photon emission phenomenon of diatomic system under conditions of driving directional tunable laser field, interatomic dipole-dipole interaction, and spontaneous emission coherence.In this study, we diagonalize the atomic Hamiltonian to obtain the eigenvalues and entangled states of the system (symmetric and asymmetric states of two atoms), and use the rotating wave approximation to rotate the system into the laser frame. The evolution of the system is characterized mainly by the evolution of symmetric and asymmetric state, as well as the evolution of coherent terms. In our studies it is found that for identical atoms, certain laser directions and geometric configurations can exclusively drive the superradiant and subradiant states of atoms, which can enhance the first-order interference effect of the atoms and markedly increase the probability of two-photon emission in a specific detection direction. When the superradiant state of the atom is solely driven, there will be no coupling between the superradiant state and subradiant state, resulting in a correlation function angular distribution that is symmetric along the direction perpendicular to atomic axis. Further adjusting the laser direction causes the atomic interference patterns to shift, and the system will exhibit two-photon emission characteristics on one side or both sides.For nonidentical atomic systems, due to detuning between the two atoms, the laser cannot drive the superradiant state or subradiant state individually, and the influence of changing the laser direction on the coupling strength diminishes with the increase of detuning between the atoms. When the laser is in resonance with one of the atoms, due to the atomic interactions, the other atom can achieve the strongest coherent effect without resonating with the laser. This research reveals that atomic detuning is crucial for the correlation values and angular distribution of the correlation function. By adjusting the atomic detuning and laser direction, the system can display highly directed one-sided two-photon emission characteristics. However, different dissipation rates will lead the probability of two-photon emission to decrease. Our studies can achieve highly directional two-photon emission on one side or both sides, which provides a theoretical basis for studying the two-photon emission of nanoantennas.
      Corresponding author: Chen Ai-Xi, aixichen@zstu.edu.cn ; Peng Ze-An, zeanpeng@zstu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204414, 12175199).
    [1]

    Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001Google Scholar

    [2]

    Li N, Jiang H W, Xia X W, Zhu C J, Xie S Y, Xu J P, Yang Y P 2021 Phys. Lett. A 420 127772Google Scholar

    [3]

    Vilas N B, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D, Doyle J M 2022 Nature 606 70Google Scholar

    [4]

    Cidrim A, doEspiritoSanto T S, Schachenmayer J, Kaiser R, Bachelard R 2020 Phys. Rev. Lett. 125 073601Google Scholar

    [5]

    Moreno-Cardoner M, Plankensteiner D, Ostermann L, Chang D E, Ritsch H 2019 Phys. Rev. A 100 023806Google Scholar

    [6]

    Nelson K D, Li X, Weiss D S 2007 Nat. Phys. 3 556Google Scholar

    [7]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [8]

    Goban A, Hung C L, Hood J D, Yu S P, Muniz J A, Painter O, Kimble H J 2015 Phys. Rev. Lett. 115 063601Google Scholar

    [9]

    Scully M O, Svidzinsky A A 2009 Science 325 1510Google Scholar

    [10]

    Hildred G P, Puri R R, Hassan S S, Bullough R K 1984 J. Phys. B: At. Mol. Phys. 17 L535Google Scholar

    [11]

    Corman L, Ville J L, Saint-Jalm R, Aidelsburger M, Bienaimé T, Nascimbène S, Dalibard J, Beugnon J 2017 Phys. Rev. A 96 053629Google Scholar

    [12]

    Rui J, Wei D, Rubio-Abadal A, Hollerith S, Zeiher J, Stamper-Kurn D M, Gross C, Bloch I 2020 Nature 583 369Google Scholar

    [13]

    Peng J S, Li G X 1993 Phys. Rev. A 47 4212Google Scholar

    [14]

    Richter S, Wolf S, von Zanthier J, Schmidt-Kaler F 2023 Phys. Rev. Res. 5 013163Google Scholar

    [15]

    Das S, Agarwal G S, Scully M O 2008 Phys. Rev. Lett. 101 153601Google Scholar

    [16]

    Downing C, Del Valle E, Fernández-Domínguez A I 2023 Phys. Rev. A 107 023717Google Scholar

    [17]

    Shegai T, Chen S, Miljković V D, Zengin G, Johansson P, Käll M 2011 Nat. Commun. 2 481Google Scholar

    [18]

    Vivas-Viaña A, Sánchez Muñoz C 2021 Phys. Rev. Res. 3 033136Google Scholar

    [19]

    Gulfam Q-u-A, Evers J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045501Google Scholar

    [20]

    Araneda G, Higginbottom D B, Slodička L, Colombe Y, Blatt R 2018 Phys. Rev. Lett. 120 193603Google Scholar

    [21]

    Onofrio R 2016 Can. J. Chem. 59 1129

    [22]

    Anderson B P, Gustavson T L, Kasevich M A 1996 Phys. Rev. A 53 R3727Google Scholar

    [23]

    Anderson S E, Younge K C, Raithel G 2011 Phys. Rev. Lett. 107 263001Google Scholar

    [24]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [25]

    Bouwmeester D, Pan J-W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [26]

    Akram U, Ficek Z, Swain S 2000 Phys. Rev. A 62 013413Google Scholar

    [27]

    Motes K R, Mann R L, Olson J P, Studer N M, Bergeron E A, Gilchrist A, Dowling J P, Berry D W, Rohde P P 2016 Phys. Rev. A 94 012344Google Scholar

    [28]

    Norcia M A, Cline J R K, Muniz J A, Robinson J M, Hutson R B, Goban A, Marti G E, Ye J, Thompson J K 2018 Phys. Rev. X 8 021036

    [29]

    Kim W J, Brownell J H, Onofrio R 2006 Phys. Rev. Lett. 96 200402Google Scholar

    [30]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [31]

    O'Brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [32]

    Clemens J, Horvath L, Sanders B, Carmichael H 2003 Phys. Rev. A 68 023809Google Scholar

    [33]

    Gulfam Q-u-A, Ficek Z 2016 Phys. Rev. A 94 053831Google Scholar

    [34]

    Peng Z A, Chen A X, Li G X 2022 Phys. Rev. A 106 063702Google Scholar

    [35]

    Lembessis V E, Rsheed A A, Aldossary O M, Ficek Z 2013 Phys. Rev. A 88 053814Google Scholar

    [36]

    Chu X L, Angelopoulou V, Lodahl P, Rotenberg N 2022 Phys. Rev. A 106 053702Google Scholar

    [37]

    Loudon R, Knight P L 1987 J. Mod. Opt. 34 709Google Scholar

    [38]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879Google Scholar

    [39]

    Lichtenegger H C, Schoberl T, Bartl M H, Waite H, Stucky G D 2002 Science 298 389Google Scholar

    [40]

    Carmichael H J, Walls D F 1976 J. Phys. B: At. Mol. Phys. 9 1199Google Scholar

    [41]

    Kimble H, Dagenais M, Mandel L 1978 Phys. Rev. A 18 201Google Scholar

    [42]

    Sierra E, Masson S J, Asenjo-Garcia A 2022 Phys. Rev. Res. 4 023207Google Scholar

    [43]

    Masson S J, Ferrier-Barbut I, Orozco L A, Browaeys A, Asenjo-Garcia A 2020 Phys. Rev. Lett. 125 263601Google Scholar

    [44]

    Gulfam Q-u-A 2023 J. Mod. Opt. 70 217Google Scholar

    [45]

    Gulfam Q-u-A 2023 Phys. Lett. A 480 128966Google Scholar

    [46]

    Ficek Z, Tanaś R 2002 Phys. Rep. 372 369Google Scholar

    [47]

    Alaee R, Safari A, Sandoghdar V, Boyd R W 2020 Phys. Rev. Res. 2 043409Google Scholar

    [48]

    van Loo A F, Fedorov A, Lalumière K, Sanders B C, Blais A, Wallraff A 2013 Science 342 1494Google Scholar

    [49]

    Ben-Reuven A 1980 Phys. Rev. A 22 2572Google Scholar

    [50]

    Lembessis V E, Lyras A, Rsheed A A, Aldossary O M, Ficek Z 2015 Phys. Rev. A 92 023850Google Scholar

    [51]

    Gulfam Q-u-A, Ficek Z 2018 Phys. Rev. A 98 063824Google Scholar

  • 图 1  (a) 双原子系统的模型图, 两原子受到一个方向与${r_{12}}$成${\theta _{\text{L}}}$, 频率为${\omega _{\text{L}}}$的激光场驱动. 两个探测器分别位于${{\boldsymbol{R}}_1}$和${{\boldsymbol{R}}_2}$, 与原子轴成${\theta _1}$和${\theta _2}$处探测原子发射的光子; (b) 原子能级图, 显示了原子1, 2的跃迁频率${\omega _1}$和${\omega _2}$, 自发辐射速率${\gamma _1}$, ${\gamma _2}$, 以及激光耦合强度等

    Figure 1.  (a) Schematic of the two-atom system, the atoms are driven by a laser field with frequency ${\omega _{\text{L}}}$ at an angle ${\theta _{\text{L}}}$ with respect to the interatomic vector ${r_{12}}$, detectors are placed at positions ${{\boldsymbol{R}}_1}$ and ${{\boldsymbol{R}}_2}$, detecting photons emitted by the atoms at angles ${\theta _1}$ and ${\theta _2}$ relative to the atomic axis; (b) presents the atomic energy level diagram, displaying the transition frequencies ${\omega _1}$ and ${\omega _2}$ of atoms 1 and 2, spontaneous emission rates ${\gamma _1}$ and ${\gamma _2}$, as well as laser coupling strengths.

    图 2  对角化处理后两原子能级分布 (a) 非全同原子能级分布, 对称态与反对称态存在耦合; (b)全同原子能级分布, 激光只驱动对称态$\left| s \right\rangle $

    Figure 2.  Energy level distribution of two atoms after diagonalization: (a) Non-identical atomic energy level distribution, with coupling between symmetric and antisymmetric states; (b) identical atomic energy level distribution, where the laser drives only the symmetric state $\left| s \right\rangle $.

    图 3  激光选择性驱动$\left| s \right\rangle $态和$\left| a \right\rangle $态条件 (a) ${r_{12}} = \lambda /2$; (b) ${r_{12}} = \lambda $

    Figure 3.  Conditions for laser-selective driving of $\left| s \right\rangle $ state and $\left| a \right\rangle $ state: (a) ${r_{12}} = \lambda /2$; (b) ${r_{12}} = \lambda $.

    图 4  全同原子能级布居分布, $\varDelta = 0$, ${\varDelta _{\text{L}}} = 0$, ${r_{12}} = 0.5\lambda $, ${\gamma _1} = {\gamma _2}$ (a) 原子能级布居随$\varOmega $的变化, 激光入${\theta _{\text{L}}} = {\text{π }}/2$; (b) 原子能级布居随激光入射角${\theta _{\text{L}}}$的变化, $\varOmega = 0.5\gamma $

    Figure 4.  Energy level population distribution of identical atoms with $\varDelta = 0$, ${\varDelta _{\text{L}}} = 0$, ${r_{12}} = 0.5\lambda $, ${\gamma _1} = {\gamma _2}$: (a) The atomic energy level population as a function of $\varOmega $ with laser incidence at ${\theta _{\text{L}}} = {\text{π }}/2$; (b) the change in atomic energy level population with the laser incidence angle ${\theta _{\text{L}}}$, for $\varOmega = 0.5\gamma $.

    图 5  非全同原子能级布居分布, ${\theta _{\text{L}}} = {\text{π }}/2$, $\varOmega = 0.5\gamma $, ${\omega _2} = $$ {\omega _{\text{L}}}$, ${r_{12}} = 0.5\lambda $ (a) 原子能级布居随$\varDelta $的变化, ${\gamma _1} = {\gamma _2}$; (b) 原子能级布居随耗散比${\gamma _1}/{\gamma _2}$的变化, $\varDelta = 0$

    Figure 5.  Energy level population distribution for non-identical atoms with ${\theta _{\text{L}}} = {\text{π }}/2$, $\varOmega = 0.5\gamma $, ${\omega _2} = {\omega _{\text{L}}}$, and ${r_{12}} = 0.5\lambda $: (a) The variation of atomic energy level population with $\varDelta $, ${\gamma _1} = {\gamma _2}$; (b) the change in atomic energy level population with the dissipative ratio ${\gamma _1}/{\gamma _2}$, $\varDelta = 0$.

    图 6  全同原子${g^{(2)}}({\boldsymbol{R}}, {\boldsymbol{R}})$关联值随探测角的分布, ${\varDelta _{\text{L}}} = 0$ (a) ${\theta _{\text{L}}} = {\text{π }}/2$, ${r_{12}} = 0.5\lambda $, $\varOmega = 0.1\gamma $; (b) 红线${\theta _{\text{L}}} = {\text{π }}/2$, 蓝线${\theta _{\text{L}}} = {\text{π }}$, ${r_{12}} = 0.5\lambda $, $\varOmega = 0.5\gamma $; (c) ${\theta _{\text{L}}} = {\text{π }}/2$红线, ${\theta _{\text{L}}} = {\text{π }}/3$蓝线, ${\theta _{\text{L}}} = 2{\text{π }}/3$绿线, ${r_{12}} = 0.5\lambda $, $\varOmega = 0.5\gamma $; (d) ${\theta _{\text{L}}} = {\text{π }}/2$红线, ${\theta _{\text{L}}} = {\text{π }}$蓝虚线, ${\theta _{\text{L}}} = {\text{π }}/3$绿线. ${r_{12}} = \lambda $, $\varOmega = 0.5\gamma $

    Figure 6.  Distribution of the second-order correlation function ${g^{(2)}}({\boldsymbol{R}}, {\boldsymbol{R}})$ for identical atoms as a function of the detection angle with ${\varDelta _{\text{L}}} = 0$: (a) For ${\theta _{\text{L}}} = {\text{π }}/2$, ${r_{12}} = 0.5\lambda $, and $\varOmega = 0.1\gamma $; (b) for ${\theta _{\text{L}}} = {\text{π }}/2$ represented by the red line and ${\theta _{\text{L}}} = {\text{π }}$ by the blue line, with ${r_{12}} = 0.5\lambda $ and $\varOmega = 0.5\gamma $; (c) for ${\theta _{\text{L}}} = {\text{π }}/2$ shown as the red line, ${\theta _{\text{L}}} = {\text{π }}/3$ as the blue line, and ${\theta _{\text{L}}} = 2{\text{π }}/3$ as the green line, with ${r_{12}} = 0.5\lambda $ and $\varOmega = 0.5\gamma $; (d) for ${\theta _{\text{L}}} = {\text{π }}/2$ by the red solid line, ${\theta _{\text{L}}} = {\text{π }}$ by the blue dashed line, and ${\theta _{\text{L}}} = {\text{π }}/3$ as the green line, with ${r_{12}} = \lambda $ and $\varOmega = 0.5\gamma $.

    图 7  非全同原子${g^{(2)}}({\boldsymbol{R}}, {\boldsymbol{R}})$关联值随探测角的分布, ${r_{12}} = 0.5\lambda $, $\varOmega = 0.5\gamma $ (a) ${\theta _{\text{L}}} = {\text{π }}/2$, ${\gamma _1} = {\gamma _2}$, ${\omega _{\text{L}}} = {\omega _2}$, 蓝线$\varDelta = 0.75\gamma $, 绿线$\varDelta = - 0.75\gamma $; (b) ${\theta _{\text{L}}} = {\text{π }}/2$, ${\gamma _1} = {\gamma _2}$, ${\omega _{\text{L}}} = {\omega _1}$, 蓝线$\varDelta = 0.75\gamma $, 绿线$\varDelta = - 0.75\gamma $; (c) ${\theta _{\text{L}}} = {\text{π }}$, ${\gamma _1} = {\gamma _2}$, ${\omega _{\text{L}}} = {\omega _1}$, 蓝线$\varDelta = 0.75\gamma $, 绿线$\varDelta = - 0.75\gamma $; (d) ${\theta _{\text{L}}} = {\text{π }}/2$, $\varDelta = 0$, ${\gamma _1} = {\gamma _2}$红线, ${\gamma _1} = 2{\gamma _2}$蓝线, ${\gamma _1} = 10{\gamma _2}$绿线

    Figure 7.  Distribution of the second-order correlation value ${g^{(2)}}({\boldsymbol{R}}, {\boldsymbol{R}})$ for distinguishable atoms as a function of the detection angle with ${r_{12}} = 0.5\lambda $ and $\varOmega = 0.5\gamma $: (a) ${\theta _{\text{L}}} = {\text{π }}/2$, ${\gamma _1} = {\gamma _2}$, ${\omega _{\text{L}}} = {\omega _2}$, the blue line corresponds to $\varDelta = 0.75\gamma $ and the green line to $\varDelta = - 0.75\gamma $; (b) ${\theta _{\text{L}}} = {\text{π }}/2$, ${\gamma _1} = {\gamma _2}$, ${\omega _{\text{L}}} = {\omega _1}$, the blue line is for $\varDelta = 0.75\gamma $ and the green line for $\varDelta = - 0.75\gamma $; (c) ${\theta _{\text{L}}} = {\text{π }}$, ${\gamma _1} = {\gamma _2}$, ${\omega _{\text{L}}} = {\omega _1}$, the blue line is for $\varDelta = 0.75\gamma $ and the green line for $\varDelta = - 0.75\gamma $; (d) with ${\theta _{\text{L}}} = {\text{π }}/2$ and $\varDelta = 0$, the red line is for ${\gamma _1} = {\gamma _2}$, the blue line for ${\gamma _1} = 2{\gamma _2}$, and the green line for ${\gamma _1} = 10{\gamma _2}$.

  • [1]

    Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001Google Scholar

    [2]

    Li N, Jiang H W, Xia X W, Zhu C J, Xie S Y, Xu J P, Yang Y P 2021 Phys. Lett. A 420 127772Google Scholar

    [3]

    Vilas N B, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D, Doyle J M 2022 Nature 606 70Google Scholar

    [4]

    Cidrim A, doEspiritoSanto T S, Schachenmayer J, Kaiser R, Bachelard R 2020 Phys. Rev. Lett. 125 073601Google Scholar

    [5]

    Moreno-Cardoner M, Plankensteiner D, Ostermann L, Chang D E, Ritsch H 2019 Phys. Rev. A 100 023806Google Scholar

    [6]

    Nelson K D, Li X, Weiss D S 2007 Nat. Phys. 3 556Google Scholar

    [7]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [8]

    Goban A, Hung C L, Hood J D, Yu S P, Muniz J A, Painter O, Kimble H J 2015 Phys. Rev. Lett. 115 063601Google Scholar

    [9]

    Scully M O, Svidzinsky A A 2009 Science 325 1510Google Scholar

    [10]

    Hildred G P, Puri R R, Hassan S S, Bullough R K 1984 J. Phys. B: At. Mol. Phys. 17 L535Google Scholar

    [11]

    Corman L, Ville J L, Saint-Jalm R, Aidelsburger M, Bienaimé T, Nascimbène S, Dalibard J, Beugnon J 2017 Phys. Rev. A 96 053629Google Scholar

    [12]

    Rui J, Wei D, Rubio-Abadal A, Hollerith S, Zeiher J, Stamper-Kurn D M, Gross C, Bloch I 2020 Nature 583 369Google Scholar

    [13]

    Peng J S, Li G X 1993 Phys. Rev. A 47 4212Google Scholar

    [14]

    Richter S, Wolf S, von Zanthier J, Schmidt-Kaler F 2023 Phys. Rev. Res. 5 013163Google Scholar

    [15]

    Das S, Agarwal G S, Scully M O 2008 Phys. Rev. Lett. 101 153601Google Scholar

    [16]

    Downing C, Del Valle E, Fernández-Domínguez A I 2023 Phys. Rev. A 107 023717Google Scholar

    [17]

    Shegai T, Chen S, Miljković V D, Zengin G, Johansson P, Käll M 2011 Nat. Commun. 2 481Google Scholar

    [18]

    Vivas-Viaña A, Sánchez Muñoz C 2021 Phys. Rev. Res. 3 033136Google Scholar

    [19]

    Gulfam Q-u-A, Evers J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045501Google Scholar

    [20]

    Araneda G, Higginbottom D B, Slodička L, Colombe Y, Blatt R 2018 Phys. Rev. Lett. 120 193603Google Scholar

    [21]

    Onofrio R 2016 Can. J. Chem. 59 1129

    [22]

    Anderson B P, Gustavson T L, Kasevich M A 1996 Phys. Rev. A 53 R3727Google Scholar

    [23]

    Anderson S E, Younge K C, Raithel G 2011 Phys. Rev. Lett. 107 263001Google Scholar

    [24]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [25]

    Bouwmeester D, Pan J-W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [26]

    Akram U, Ficek Z, Swain S 2000 Phys. Rev. A 62 013413Google Scholar

    [27]

    Motes K R, Mann R L, Olson J P, Studer N M, Bergeron E A, Gilchrist A, Dowling J P, Berry D W, Rohde P P 2016 Phys. Rev. A 94 012344Google Scholar

    [28]

    Norcia M A, Cline J R K, Muniz J A, Robinson J M, Hutson R B, Goban A, Marti G E, Ye J, Thompson J K 2018 Phys. Rev. X 8 021036

    [29]

    Kim W J, Brownell J H, Onofrio R 2006 Phys. Rev. Lett. 96 200402Google Scholar

    [30]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [31]

    O'Brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [32]

    Clemens J, Horvath L, Sanders B, Carmichael H 2003 Phys. Rev. A 68 023809Google Scholar

    [33]

    Gulfam Q-u-A, Ficek Z 2016 Phys. Rev. A 94 053831Google Scholar

    [34]

    Peng Z A, Chen A X, Li G X 2022 Phys. Rev. A 106 063702Google Scholar

    [35]

    Lembessis V E, Rsheed A A, Aldossary O M, Ficek Z 2013 Phys. Rev. A 88 053814Google Scholar

    [36]

    Chu X L, Angelopoulou V, Lodahl P, Rotenberg N 2022 Phys. Rev. A 106 053702Google Scholar

    [37]

    Loudon R, Knight P L 1987 J. Mod. Opt. 34 709Google Scholar

    [38]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879Google Scholar

    [39]

    Lichtenegger H C, Schoberl T, Bartl M H, Waite H, Stucky G D 2002 Science 298 389Google Scholar

    [40]

    Carmichael H J, Walls D F 1976 J. Phys. B: At. Mol. Phys. 9 1199Google Scholar

    [41]

    Kimble H, Dagenais M, Mandel L 1978 Phys. Rev. A 18 201Google Scholar

    [42]

    Sierra E, Masson S J, Asenjo-Garcia A 2022 Phys. Rev. Res. 4 023207Google Scholar

    [43]

    Masson S J, Ferrier-Barbut I, Orozco L A, Browaeys A, Asenjo-Garcia A 2020 Phys. Rev. Lett. 125 263601Google Scholar

    [44]

    Gulfam Q-u-A 2023 J. Mod. Opt. 70 217Google Scholar

    [45]

    Gulfam Q-u-A 2023 Phys. Lett. A 480 128966Google Scholar

    [46]

    Ficek Z, Tanaś R 2002 Phys. Rep. 372 369Google Scholar

    [47]

    Alaee R, Safari A, Sandoghdar V, Boyd R W 2020 Phys. Rev. Res. 2 043409Google Scholar

    [48]

    van Loo A F, Fedorov A, Lalumière K, Sanders B C, Blais A, Wallraff A 2013 Science 342 1494Google Scholar

    [49]

    Ben-Reuven A 1980 Phys. Rev. A 22 2572Google Scholar

    [50]

    Lembessis V E, Lyras A, Rsheed A A, Aldossary O M, Ficek Z 2015 Phys. Rev. A 92 023850Google Scholar

    [51]

    Gulfam Q-u-A, Ficek Z 2018 Phys. Rev. A 98 063824Google Scholar

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Su Yu-Hang, Zhang Lian, Tao Can, Wang Ning, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Spontaneous emission enhancement and directional emission by an optical nanonatenna array on a metallic mirror. Acta Physica Sinica, 2023, 72(7): 078101. doi: 10.7498/aps.72.20222007
    [3] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] Wu Jin, Lu Zhan-Peng, Xu Zhi-Hao, Guo Li-Ping. Mobility edges and reentrant localization induced by superradiance. Acta Physica Sinica, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [6] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [7] Shi Ting-Ting, Wang Liu-Jiu, Wang Jing-Kun, Zhang Wei. Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling. Acta Physica Sinica, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [8] Feng Yan-Lin, Fan Jing-Tao, Chen Gang, Jia Suo-Tang. Magnetic properties of one-dimensional Fermi gases in an optical cavity. Acta Physica Sinica, 2019, 68(4): 043702. doi: 10.7498/aps.68.20181954
    [9] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [10] Xiong Zhi-Cheng, Zhu Li-Lin, Liu Cheng, Gao Shu-Mei, Zhu Jian-Qiang. High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna. Acta Physica Sinica, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [11] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhu Xiang-Qin, Zhang Dian-Hui, Qiao Hai-Liang. Numerical simulation of generation and radiation of super-radiation from relativistic backward wave oscillators. Acta Physica Sinica, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [12] He Bao-Ping, Ding Li-Li, Yao Zhi-Bin, Xiao Zhi-Gang, Huang Shao-Yan, Wang Zu-Jun. Three-dimensional simulation of total dose effects on ultra-deep submicron devices. Acta Physica Sinica, 2011, 60(5): 056105. doi: 10.7498/aps.60.056105
    [13] Li Yuan, Dou Xiu-Ming, Chang Xiu-Ying, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Correlation measurement of quantum cascade photons in single InAs quantum dot. Acta Physica Sinica, 2011, 60(1): 017804. doi: 10.7498/aps.60.017804
    [14] Wang Hui-Qin, Liu Zheng-Dong. The influence on the radiation characteristics of an amorphous nanocluster by introducing photonic crystals. Acta Physica Sinica, 2009, 58(3): 1648-1654. doi: 10.7498/aps.58.1648
    [15] Jia Wan-Li, Shi Wei, Qu Guang-Hui, Sun Xiao-Fang. The calculation of terahertz wave power radiated from GaAs photoconductive antenna. Acta Physica Sinica, 2008, 57(9): 5425-5428. doi: 10.7498/aps.57.5425
    [16] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [17] Han Zeng-Fu, Wang Jun-Hong. Study on the radiation characteristics of the dielectric parallelly loaded dipole antenna for pulse radiation. Acta Physica Sinica, 2005, 54(2): 642-647. doi: 10.7498/aps.54.642
    [18] Huang hong-Bin. . Acta Physica Sinica, 1995, 44(4): 545-551. doi: 10.7498/aps.44.545
    [19] . Acta Physica Sinica, 1975, 24(1): 46-50. doi: 10.7498/aps.24.46
    [20] L. JEN, M. Y. LOO. THE SUPPRESSION OF SIDE-LOBES OF LINEAR ARRAYS. Acta Physica Sinica, 1961, 17(12): 592-599. doi: 10.7498/aps.17.592
Metrics
  • Abstract views:  997
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2024
  • Accepted Date:  19 May 2024
  • Available Online:  05 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回