Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical color fragile watermark based on pixel-free expansion visual cryptography

Liu Rui-Ze Zhu Yu-Peng Zhou Xin-Long Mi Zhao-Ke Wu Cheng-Zhe Qin Qiao-Hua Ke Chang-Jun Shi Yi-Shi

Citation:

Optical color fragile watermark based on pixel-free expansion visual cryptography

Liu Rui-Ze, Zhu Yu-Peng, Zhou Xin-Long, Mi Zhao-Ke, Wu Cheng-Zhe, Qin Qiao-Hua, Ke Chang-Jun, Shi Yi-Shi
PDF
HTML
Get Citation
  • In recent years, with the continuous development of computer technology, it has brought convenience to people to obtain image information. However, at the same time, the falsification and theft of image information have also emerged, so information security has received increasing attention. When images are used for medicine, military, court, and other purposes, it is necessary to ensure the authenticity and integrity of the image content. Fragile watermarks are used to verify the authenticity and integrity of image content due to their sensitivity to tampering. The watermark information is embedded in the image and integrated with the image. When it is necessary to detect the authenticity and integrity of image information, the extracted watermark can be used to determine whether the image is reliable and complete. Therefore, we propose an optical color fragile watermarking system based on pixel-free expansion visual cryptography. On the one hand, encoding watermark images by using pixel-free expansion visual cryptography avoids pixel expansion issues caused by visual cryptography, allowing for the selection of color host images with the same pixel size as the watermark image in the future, greatly reducing the network bandwidth and storage space occupied during transmission. On the other hand, phase recovery algorithm is used to process the encoded watermark image to obtain phase information for embedding into the host image, further improving the security of the watermark image in an optical way. The feasibility and imperceptibility of the proposed optical color fragile watermark are verified through computer simulation, and its good fragility is verified through a series of simulation attack experiments. It can sensitively detect image tampering in the face of common attacks such as noise pollution, rotation, motion blur processing, filtering, etc.
      Corresponding author: Shi Yi-Shi, sysopt@126.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3602604), the National Natural Science Foundation of China (Grant Nos. 62131011, 62075221, 61975205), the Fusion Foundation of Research and Education of Chinese Academy of Sciences, University of Chinese Academy of Sciences, the Fundamental Research Funds for the Central Universities of China, the Innovation Capability Improvement Plan of Hebei Province, China (Grant No. 20540302D).
    [1]

    Thanki R 2021 Int. J. Digit. Crime Fourensics 13 35Google Scholar

    [2]

    张凤英 2014 硕士学位论文 (成都: 西南交通大学)

    Zhang F Y 2014 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [3]

    沈嘉琪 2019 硕士学位论文 (武汉: 华中科技大学)

    Shen J Q 2019 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [4]

    周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗 2021 物理学报 70 244201Google Scholar

    Zhou X L, Zhu Y P, Yang D Y, Zhang J H, Lu Z, Wang H Y, Dong Z, Ke C J, Shi Y S 2021 Acta Phys. Sin. 70 244201Google Scholar

    [5]

    杨雅姿 2023 硕士学位论文 (荆州: 长江大学)

    Yang Y Z 2023 M. S. Thesis (Jingzhou: Yangtze University

    [6]

    Chen Z Y 2013 Signal Process. Image Commun. 28 301Google Scholar

    [7]

    龚馨慧 2019 硕士学位论文 (北京: 北京邮电大学)

    Gong X H 2019 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [8]

    郁滨, 付正欣, 沈刚, 房礼国 2014 视觉密码(合肥: 中国科学技术大学出版社)第2—3页

    Yu B, Fu Z X, Shen G, Fang L G 2014 Visual Cryptography (Hefei: University of Science and Technology of China Press) pp2–3

    [9]

    Naor M, Shamir M 1994 Lect. Notes Comput. Sci. 950 1Google Scholar

    [10]

    赵永康 2023 博士学位论文 (天津: 南开大学)

    Zhao Y K 2023 Ph. D. Dissertation (Tianjin: Nankai University

    [11]

    Blundo C, Bonis A D, Santis A D 2001 Designs Codes Cryptogr. 24 255Google Scholar

    [12]

    Blundo C, Santis A D, Naor M 2000 Inf. Proc. Lett. 75 255Google Scholar

    [13]

    Lin C C, Tsai W H 2003 Pattern Recognit. Lett. 24 349Google Scholar

    [14]

    Hou Y C 2003 Pattern Recognit. 36 1619Google Scholar

    [15]

    Yamamoto H, Hayasaki Y, Nishida N 2004 Opt. Express 12 1258Google Scholar

    [16]

    Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar

    [17]

    于韬, 杨栋宇, 马锐, 史祎诗 2020 物理学报 69 144202Google Scholar

    Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin 69 144202Google Scholar

    [18]

    Ateniese G, Blundo C, Santis A D, Stinson D R 2001 Theor. Coumpt. Sci. 250 143Google Scholar

    [19]

    Shyu S J 2007 Pattern. Recogn. 40 1014Google Scholar

    [20]

    Shyu S J 2009 Pattern. Recogn. 42 1582Google Scholar

    [21]

    王洪君, 马冬鹤, 张恩绮, 赵腾飞 2018 武汉大学学报(工学版) 51 1123Google Scholar

    Wang H J, Ma D H, Zhang E Q, Zhao T F 2018 Eng. J. Wuhan Univ. 51 1123Google Scholar

    [22]

    胡浩, 郁滨, 沈刚 2015 计算机科学 42 103Google Scholar

    Hu H, Yu B, Shen G 2015 Comput. Sci. 42 103Google Scholar

    [23]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [24]

    张鹄翔 2021 硕士学位论文 (杭州: 浙江大学)

    Zhang H X 2021 M. S. Thesis (Hangzhou: Zhejiang University

    [25]

    Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar

    [26]

    Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar

  • 图 1  光学水印生成及嵌入过程

    Figure 1.  Optical watermark generation and embedding process.

    图 2  光学水印提取过程

    Figure 2.  Optical watermark extraction process.

    图 3  像素不扩展视觉密码编码方案

    Figure 3.  Pixel-free expansion visual cryptography encoding scheme.

    图 4  仿真结果图 (a)原始图像; (b)水印图像; (c)彩色宿主图像; (d)相位信息; (e)彩色含水印图像; (f)再现图像; (g)叠加图像; (h)提取的水印图像; (i)提取的原始图像

    Figure 4.  Simulation result diagram: (a) Original image; (b) watermark image; (c) color host image; (d) phase information; (e) color images with watermarks; (f) reproduced image; (g) overlay image; (h) extracted watermark image; (i) extracted original image.

    图 5  任意两张再现图像叠加结果图 (a)第1张再现图像与第2张再现图像叠加; (b)第1张再现图像与第3张再现图像叠加; (c)第2张再现图像与第3张再现图像叠加

    Figure 5.  Overlay results of any two reproduced images: (a) Overlay of the first reproduced image and the second reproduced image; (b) overlay the first reproduced image with the third reproduced image; (c) overlay of the second and third reproduced images.

    图 6  攻击实验结果图 (a)—(c)高斯噪声、椒盐噪声、均匀噪声; (d)—(h)旋转、运动模糊、高斯低通滤波、裁剪、JPEG压缩

    Figure 6.  Attack experiment results: (a)–(c) Gaussian noise, salt and pepper noise, uniform noise; (d)–(h) rotation, motion blur, Gaussian low-pass filtering, cropping, JPEG compression.

    图 7  各分量的PSNR与衰减系数的关系

    Figure 7.  Relationship between PSNR of each component and attenuation coefficient.

    图 8  不同宿主图像与含水印图像对比 (a)—(c) “flower”宿主图像、“fruit”宿主图像、“panda”宿主图像; (d)—(f) “flower”彩色含水印图像, “fruit”彩色含水印图像, “panda”彩色含水印图像

    Figure 8.  Comparison between different host images and watermarked images: (a)–(c) “flower” host image, “fruit” host image, “panda” host image; (d)–(f) “flower” color watermarked image, “fruit” color watermarked image, “panda” color watermarked image.

    表 1  不同宿主图像的PSNR

    Table 1.  PSNR of different host images.

    实验次数 Flower Fruit Panda
    PSNR PSNR PSNR
    1 50.4512 50.3216 50.4309
    2 50.3675 50.3364 50.3374
    3 50.2660 50.4510 50.4138
    4 50.4219 50.4544 50.3442
    5 50.2407 50.2530 50.3409
    6 50.5150 50.4241 50.4853
    7 50.4227 50.4452 50.4365
    8 50.4355 50.4863 50.3971
    9 50.5024 50.4492 50.3321
    10 50.3872 50.4446 50.2862
    平均 50.4001 50.4066 50.3794
    DownLoad: CSV
  • [1]

    Thanki R 2021 Int. J. Digit. Crime Fourensics 13 35Google Scholar

    [2]

    张凤英 2014 硕士学位论文 (成都: 西南交通大学)

    Zhang F Y 2014 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [3]

    沈嘉琪 2019 硕士学位论文 (武汉: 华中科技大学)

    Shen J Q 2019 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [4]

    周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗 2021 物理学报 70 244201Google Scholar

    Zhou X L, Zhu Y P, Yang D Y, Zhang J H, Lu Z, Wang H Y, Dong Z, Ke C J, Shi Y S 2021 Acta Phys. Sin. 70 244201Google Scholar

    [5]

    杨雅姿 2023 硕士学位论文 (荆州: 长江大学)

    Yang Y Z 2023 M. S. Thesis (Jingzhou: Yangtze University

    [6]

    Chen Z Y 2013 Signal Process. Image Commun. 28 301Google Scholar

    [7]

    龚馨慧 2019 硕士学位论文 (北京: 北京邮电大学)

    Gong X H 2019 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [8]

    郁滨, 付正欣, 沈刚, 房礼国 2014 视觉密码(合肥: 中国科学技术大学出版社)第2—3页

    Yu B, Fu Z X, Shen G, Fang L G 2014 Visual Cryptography (Hefei: University of Science and Technology of China Press) pp2–3

    [9]

    Naor M, Shamir M 1994 Lect. Notes Comput. Sci. 950 1Google Scholar

    [10]

    赵永康 2023 博士学位论文 (天津: 南开大学)

    Zhao Y K 2023 Ph. D. Dissertation (Tianjin: Nankai University

    [11]

    Blundo C, Bonis A D, Santis A D 2001 Designs Codes Cryptogr. 24 255Google Scholar

    [12]

    Blundo C, Santis A D, Naor M 2000 Inf. Proc. Lett. 75 255Google Scholar

    [13]

    Lin C C, Tsai W H 2003 Pattern Recognit. Lett. 24 349Google Scholar

    [14]

    Hou Y C 2003 Pattern Recognit. 36 1619Google Scholar

    [15]

    Yamamoto H, Hayasaki Y, Nishida N 2004 Opt. Express 12 1258Google Scholar

    [16]

    Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar

    [17]

    于韬, 杨栋宇, 马锐, 史祎诗 2020 物理学报 69 144202Google Scholar

    Yu T, Yang D Y, Ma R, Shi Y S 2020 Acta Phys. Sin 69 144202Google Scholar

    [18]

    Ateniese G, Blundo C, Santis A D, Stinson D R 2001 Theor. Coumpt. Sci. 250 143Google Scholar

    [19]

    Shyu S J 2007 Pattern. Recogn. 40 1014Google Scholar

    [20]

    Shyu S J 2009 Pattern. Recogn. 42 1582Google Scholar

    [21]

    王洪君, 马冬鹤, 张恩绮, 赵腾飞 2018 武汉大学学报(工学版) 51 1123Google Scholar

    Wang H J, Ma D H, Zhang E Q, Zhao T F 2018 Eng. J. Wuhan Univ. 51 1123Google Scholar

    [22]

    胡浩, 郁滨, 沈刚 2015 计算机科学 42 103Google Scholar

    Hu H, Yu B, Shen G 2015 Comput. Sci. 42 103Google Scholar

    [23]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [24]

    张鹄翔 2021 硕士学位论文 (杭州: 浙江大学)

    Zhang H X 2021 M. S. Thesis (Hangzhou: Zhejiang University

    [25]

    Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar

    [26]

    Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar

  • [1] Wu Cheng-Zhe, Liu Rui-Ze, Shi Yi-Shi. Optical-hidden-visual-cryptography-based spoofing tracking system. Acta Physica Sinica, 2024, 73(14): 144201. doi: 10.7498/aps.73.20231721
    [2] Shan Ming-Guang, Liu Xiang-Yu, Pang Cheng, Zhong Zhi, Yu Lei, Liu Bin, Liu Lei. Off-axis digital holographic decarrier phase recovery algorithm combined with linear regression. Acta Physica Sinica, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [3] Precise phase retrieval with carrier removal from single off-axis hologram by linear regression. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211509
    [4] Zhou Xin-Long, Zhu Yu-Peng, Yang Dong-Yu, Zhang Jun-Hao, Lu Zhe, Wang Hua-Ying, Dong Zhao, Ke Chang-Jun, Shi Yi-Shi. Optical fragile watermarking based on visual cryptography and QR code. Acta Physica Sinica, 2021, 70(24): 244201. doi: 10.7498/aps.70.20210964
    [5] Chen Jie, Zhou Xin, Bai Xing, Li Cong, Xu Zhao, Ni Yang. Equivalence analysis of highly scattering process and double random phase encryption process. Acta Physica Sinica, 2021, 70(13): 134201. doi: 10.7498/aps.70.20201903
    [6] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [7] Yu Tao, Yang Dong-Yu, Ma Rui, Zhu Yu-Peng, Shi Yi-Shi. Enhanced-visual-cryptography-based optical information hiding system. Acta Physica Sinica, 2020, 69(14): 144202. doi: 10.7498/aps.69.20200496
    [8] Xiao Xiao, Du Shu-Man, Zhao Fu, Wang Jing, Liu Jun, Li Ru-Xin. Single-shot optical speckle imaging based on pseudothermal illumination. Acta Physica Sinica, 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [9] Wu Jia-Jian, Gong Kai, Wang Cong, Wang Lei. Enhancing resilience of interdependent networks against cascading failures under preferential recovery strategies. Acta Physica Sinica, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [10] Su Li-Yun, Sun Huan-Huan, Wang Jie, Yang Li-Ming. Detection and estimation of weak pulse signal in chaotic background noise. Acta Physica Sinica, 2017, 66(9): 090503. doi: 10.7498/aps.66.090503
    [11] Fang Zhi-Ming, Cui Rong-Yi, Jin Jing-Xuan. Video saliency detection algorithm based on biological visual feature and visual psychology theory. Acta Physica Sinica, 2017, 66(10): 109501. doi: 10.7498/aps.66.109501
    [12] Du Jing-Lin, Zheng Ruo-Qin, Xie Li. Honeycomb architecture based mobile fault-tolerant recovery algorithm in WSANs. Acta Physica Sinica, 2015, 64(1): 018901. doi: 10.7498/aps.64.018901
    [13] Wan Xing-Yuan, Zhang Ji-Ming. A novel image authentication and recovery algorithm based on dither and chaos. Acta Physica Sinica, 2014, 63(21): 210701. doi: 10.7498/aps.63.210701
    [14] Wang Xing-Yuan, Zhang Ji-Ming. A novel image authentication and recovery algorithm based on chaos and Hamming code. Acta Physica Sinica, 2014, 63(2): 020701. doi: 10.7498/aps.63.020701
    [15] Liu Hong-Zhan, Ji Yue-Feng. An ameliorated fast phase retrieval iterative algorithm based on the angular spectrum theory. Acta Physica Sinica, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [16] Zhu Zhen-Min, Qu Xin-Ghua, Bi Chao, Jia Guo-Xin, Zhang fu-Min. Study on colorimetric properties of LED array sources for color vision application. Acta Physica Sinica, 2012, 61(2): 020702. doi: 10.7498/aps.61.020702
    [17] Picart Pascal, Tankam Patrice, Peng Zu-Jie, Li Jun-Chang. An optical system of scattered light digital color holography and its wave front reconstruction algorithm. Acta Physica Sinica, 2010, 59(7): 4646-4655. doi: 10.7498/aps.59.4646
    [18] He Hong-Jie, Zhang Jia-Shu. A chaos-based self-embedding secure watermarking algorithm. Acta Physica Sinica, 2007, 56(6): 3092-3100. doi: 10.7498/aps.56.3092
    [19] Liu Fu-Min, Zhai Hong-Chen, Yang Xiao-Ping. Kinoform-based iterative random phase encryption. Acta Physica Sinica, 2003, 52(10): 2462-2465. doi: 10.7498/aps.52.2462
    [20] YANG GUO-ZHEN, GU BEN-YUAN. ON THE AMPLITUDE-PHASE RETRIEVAL PROBLEM IN OPTICAL SYSTEMS. Acta Physica Sinica, 1981, 30(3): 410-413. doi: 10.7498/aps.30.410
Metrics
  • Abstract views:  1894
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2023
  • Accepted Date:  28 April 2024
  • Available Online:  24 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回