Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A wall-modeled hybrid RANS/LES model for flow around circular cylinder with coherent structures in subcritical Reynolds number regions

Ji Meng You Yun-Xiang Han Pan-Pan Qiu Xiao-Ping Ma Qiao Wu Kai-Jian

Citation:

A wall-modeled hybrid RANS/LES model for flow around circular cylinder with coherent structures in subcritical Reynolds number regions

Ji Meng, You Yun-Xiang, Han Pan-Pan, Qiu Xiao-Ping, Ma Qiao, Wu Kai-Jian
PDF
HTML
Get Citation
  • In the present paper, a hybrid RANS/LES model with the wall-modelled LES capability (called WM-HRL model) is developed to perform the high-fidelity CFD simulation investigation for complex flow phenomena around a bluff body with coherent structure in subcritical Reynolds number region. The proposed method can achieve a fast and seamless transition from RANS to LES through a filter parameter rk which is only related to the space resolution capability of the local grid system for various turbulent scales. Furthermore, the boundary positions of the transition region from RANS to LES, as well as the resolving capabilities for the turbulent kinetic energy in the three regions, i.e. RANS, LES and transition region, can be preset by two guide index parameters nrk1-Q and nrk2-Q. Through a series of numerical simulations of the flow around a circular cylinder at Reynolds number Re = 3900, the combination conditions are obtained for such two guide index parameters nrk1-Q and nrk2-Q that have the capability of high-fidelity resolving and capturing temporally- and spatially-developing coherent structures for such complex three-dimensional flows around such a circular cylinder. The results demonstrate that the new WM-HRL model is capable of accurately resolving and capturing the fine spectral structures of the small-scale Kelvin-Helmholtz instability in the shear layer for flow around such a circular cylinder. Furthermore, under a consistent grid system, through different combinations of these two guide index parameters rk1 and rk2, the fine structuresof the recirculation zones with two different lengths and the U-shaped and V-shaped distribution of the average stream-wise velocity in the cylinder near the wake can also be obtained.
      Corresponding author: You Yun-Xiang, youyx@sjtu.edu.cn
    [1]

    Zdravkovich M M 1997 Flow Around Circular Cylinders (Vol. 120) (Oxford: Oxford Science Publication) pp2–7

    [2]

    Pereira F S, Eça L, Vaz G, Girimaji S S 2018 J. Comput. Phys. 363 98Google Scholar

    [3]

    Prasad A, Williamson C H K 1996 Phys. Fluids 8 1347Google Scholar

    [4]

    Williamson C H K 1988 Phys. Fluids 31 3165Google Scholar

    [5]

    Palkin E, Mullyadzhanov R, Hadžiabdić M, Hanjalić K 2016 Flow Turbul. Combust. 97 1017Google Scholar

    [6]

    Xia M, Karniadakis G E 1997 Proceedings of the First AFOSR International Conference on DNS/LES Ruston, LA, August 4–8, 1997 p129

    [7]

    Ma X, Karamanos G S, Karniadakis G E 2000 J. Fluid Mech. 410 29Google Scholar

    [8]

    Tremblay F 2001 Ph. D. Dissertation (Munich: Technical University of Munich

    [9]

    Dong S, Karniadakis G E, Ekmekci A, Rockwell D 2006 J. Fluid Mech. 569 185Google Scholar

    [10]

    Lehmkuhl O, Rodr´ıguez I, Borrell R, Chiva J, Oliva A 2013 Phys. Fluids 25 085109Google Scholar

    [11]

    Song B Y, Ping H, Zhu H B, Zhou D, Bao Y, Cao Y, Han Z L 2022 Phys. Fluids 34 15109Google Scholar

    [12]

    Ooi A, Lu W, Chan L, Cao Y, Leontini J, Skvortsov A 2022 Int. J. Heat Fluid Flow 96 108982Google Scholar

    [13]

    Kim S E 2012 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9–12, 2006 p1418

    [14]

    Beaudan P, Moin P 1994 Numerical Experiments on the Flow Past a Circular Cylinder at Sub-critical Reynolds Number (Stanford: Stanford University) p57

    [15]

    Breuer M 1998 Int. J. Numer. Methods Fluids 28 1281Google Scholar

    [16]

    Kravchenko A G, Moin P 2000 Phys. Fluids 12 403Google Scholar

    [17]

    Franke J, Frank W 2002 J. Wind Eng. Ind. Aerodyn. 90 1191Google Scholar

    [18]

    Parnaudeau P, Carlier J, Heitz D, Lamballais E 2008 Phys. Fluids 20 085101Google Scholar

    [19]

    Wong J, Png E 2010 Adv. Fluid Mech. 8 79Google Scholar

    [20]

    Afgan I, Kahil Y, Benhamadouche S, Sagaut P 2011 Phys. Fluids 23 075101Google Scholar

    [21]

    Lysenko D A, Ertesvåg I S, Rian K E 2012 Flow Turbul. Combust. 89 491Google Scholar

    [22]

    Tian G, Xiao Z 2020 AIP Adv. 10 85321Google Scholar

    [23]

    郭志远, 虞培祥, 欧阳华 2021 上海交通大学学报 55 924

    Guo Z Y, Yu P X, Ouyang H 2021 J. Shanghai Jiaotong Univ. Sci. 55 924

    [24]

    Luo D H, Yan C, Liu H K, Zhao R 2014 J. Wind Eng. Ind. Aerodyn. 134 65Google Scholar

    [25]

    刘跃, 管小荣, 徐诚 2019 空气动力学学报 37 530Google Scholar

    Liu Y, Guan X R, Xu C 2019 Acta Aero. Sin. 37 530Google Scholar

    [26]

    Kořínek T, Tisovský T, Fraňa K 2021 Int. J. Therm. Sci. 169 106977Google Scholar

    [27]

    Lourenco L M, Shih C 1993 Characteristics of the Plane Turbulent Near-wake of a Circular Cylinder, A Particle Image Velocimetry Study (Data Taken From Beaudan and Moin, 1994

    [28]

    Spalart P R 2000 Int. J. Heat Fluid Flow 21 252Google Scholar

    [29]

    Fröhlich J, Von Terzi D 2008 Prog. Aerosp. Sci. 44 349Google Scholar

    [30]

    D'Alessandro V, Montelpare S, Ricci R 2016 Comput. Fluids 136 152Google Scholar

    [31]

    Gritskevich M S, Garbaruk A, Schütze J, Menter F R 2012 Flow Turbul. Combust. 88 431Google Scholar

    [32]

    Menter F R, Kuntz M, Langtry R 2003 Turbul. Heat Mass Transf. 4 625

    [33]

    Spalart P R, Deck S, Shur M L, Squires K D, Strelets M K, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181Google Scholar

    [34]

    Shur M L, Spalart P R, Strelets M K, Travin A K 2008 Int. J. Heat Fluid Flow 29 1638Google Scholar

    [35]

    Johansen S T, Wu J, Shyy W 2004 Int. J. Heat Fluid flow 25 10Google Scholar

    [36]

    Breuer M, Jovičić N, Mazaev K 2003 Int. J. Numer. Methods Fluids 41 357Google Scholar

    [37]

    Reddy K R, Ryon J A, Durbin P A 2014 Int. J. Heat Fluid Flow 50 103Google Scholar

    [38]

    宋汉奇, 张恺玲, 马鸣 2022 北京航空航天大学学报 36 2482Google Scholar

    Song H Q, Zhang K L, Ma M 2022 J. B. Univ. Aeronaut Astronaut 36 2482Google Scholar

    [39]

    Larsson J, Kawai S, Bodart J, Bermejo-Moreno I 2016 Mech. Eng. Rev. 3 15Google Scholar

    [40]

    Pope S B 2000 Turbulent Flows (New York: Cornell University) pp290–299

    [41]

    Han Y Y, He Y Y, Le J L 2020 AIAA J. 58 712Google Scholar

    [42]

    Lacombe F, Pelletier D, Garon A 2019 AIAA SciTech Forum San Diego, California, January 7–11, 2019 p2329

    [43]

    Norberg C 1994 J. Fluid Mech. 258 287Google Scholar

    [44]

    Peng S H, Davidson L, Holmberg S 1994 J. Fluids Eng. 119 867Google Scholar

    [45]

    Ong L, Wallace J 1996 Exp. Fluids 20 441Google Scholar

  • 图 1  计算区域设置

    Figure 1.  Computational domain schematic.

    图 2  计算网格剖面

    Figure 2.  Computational grid configuration.

    图 3  剪切层小尺度K-H不稳定性结构监测点分布

    Figure 3.  Location configuration of the probes for the small scale K-H instability structure in the shear layer.

    图 4  圆柱表面周向压力系数${C_{\text{p}}}$分布特性

    Figure 4.  Azimuthal distribution characteristics for pressure coefficient along the circular cylinder surface.

    图 5  沿尾流中心线平均流向速度剖面特性

    Figure 5.  Distribution characteristics of mean stream-wise velocities along the wake centerline.

    图 6  圆柱后方不同站位处平均流向速度剖面特性

    Figure 6.  Distribution characteristics of mean stream-wise velocities at different locations in the backside of the circular cylinder.

    图 7  圆柱后方不同站位处平均横向速度剖面特性

    Figure 7.  Distribution characteristics of mean cross-flow velocities at different locations in the backside of the circular cylinder.

    图 8  圆柱后方不同站位处各向同性流向雷诺应力剖面特性

    Figure 8.  Distribution characteristics of isotropic stream-wise Reynolds stresses at different locations in the backside of the circular cylinder.

    图 9  圆柱后方不同站位处各向同性横向雷诺应力剖面特性

    Figure 9.  Distribution characteristics of isotropic cross-flow Reynolds stresses at different locations in the backside of the circular cylinder.

    图 10  圆柱后方不同站位处各向异性雷诺应力剖面特性

    Figure 10.  Distribution characteristics of anisotropy cross-flow Reynolds stresses at different locations in the backside of the circular cylinder.

    图 11  在Case CU工况下, 在P1—P12监测点处横向脉动速度的Lomb谱

    Figure 11.  Lomb spectrums of the cross-stream fluctuation velocities at different probes P1–P12 for the Case CU.

    图 12  在Case CV工况下, 在P1—P12监测点处横向脉动速度的Lomb谱

    Figure 12.  Lomb spectrums of the cross-stream fluctuation velocities at different probes P1–P12 for the Case CV.

    图 13  在Case CU (第1和第2列)和Case CV (第3和第4列)工况下, 在P13—P18监测点处流向(第1和第3列)及横向(第2和第4列)脉动速度的Lomb谱

    Figure 13.  Lomb spectrums of the stream-wise (from the first to third rows) and cross-stream (from the second to fourth rows) fluctuation velocities at different probes P13–P18 for the Case CU (from the first to second rows) and the Case CV (from the third to fourth rows).

    图 14  在Case AU—DU(前4行)和Case AV—DV(后4行)工况下, 圆柱绕流涡量(左)及流向速度(右)云图

    Figure 14.  Contours of the span-wise vorticity (left) and stream-wise velocity (right) for both Case AU–DU (the first four lines) and Case AV–DV (the last four lines).

    图 15  在Case AU—DU (左)和Case AV—DV (右)工况下, 圆柱绕流展向三维涡量云图

    Figure 15.  Contours of the three-dimensional span-wise vorticities both Case AU–DU (left) and Case AV–DV (right).

    表 1  在雷诺数Re = 3900下圆柱绕流文献中所用计算模型与网格参数设置情况比较

    Table 1.  Comparisons of computational models and grid parameters in references for flow around a circular cylinder at Reynolds number Re = 3900.

    $ L_3/D $ $ \varDelta_3/D $ 网格量 ($ \times {10^6}$)
    Lehmkuhl等[10] (DNS) $ {\text{π}} $ $ {\text{π}} $/128 9.30
    Tremblay[8] (LES) $ {\text{π}} $ $ {\text{π}} $/64 7.70
    Breuer [15] (LES) $ {\text{π}} $ $ {\text{π}} $/64 1.70
    Pereira等[2] (PANS) 3.0 $ {\text{π}} $/48 4.55
    Luo等[24]
    (PANS/SST-DES)
    $ {\text{π}} $ $ {\text{π}} $/60 2.23
    D'Alessandro等[30]
    (SA-DES/SA-IDDES/
    v2-f DES)
    $ {\text{π}} $ $ {\text{π}} $/48 3.96
    本文(WM-HRL) $ {\text{π }} $ $ {\text{π }} $/64 1.43
    DownLoad: CSV

    表 2  文献中雷诺数Re = 3900下圆柱绕流场相关统计量的实验和数值结果

    Table 2.  Experimental and numerical results for flow statistical characteristics from references for flow around a circular cylinder at Reynolds numbers Re = 3900.

    参考文献及方法 $ {\bar f_{{\text{vs}}}} $ ${\bar f_{{\text{kh}}}}$ $ {\phi _{\text{s}}}/({\, ^ \circ }) $ $L_{\text{r}}/D $ $C_{\rm d} $ $ - {C_{{\text{pb}}}} $ 形状
    Parnaudeau等[18] (Exp.) 0.208 88 1.51 U
    Lourenco和Shih[27] (Exp.) 85 1.18 0.98 0.9 V
    Lehmkuhl等[10] (DNS) (Mode H) 0.214 1.34 88.25 1.26 1.043 0.98 V
    Lehmkuhl等[10] (DNS) (Mode L) 0.218 87.8 1.55 0.979 0.877 U
    Tremblay[8] (LES) 0.21 87.3 1.04 1.14 0.99 V
    Breuer[15] (LES) 0.215 87.4 1.372 1.016 0.941 V
    Pereira等[2] (PANS) ($ {f_{\text{k}}} $ = 0.25) 0.208 1.48 80.3 1.73 0.927 0.864 U
    Pereira等[2] (PANS) ($ {f_{\text{k}}} $ = 0.5) 0.214 1.55 81.8 1.12 1.036 1.050 V
    Luo等[24] (PANS) ($ {f_{\text{k}}} $ = 0.1) 0.201 87.2 1.27 1.05 0.94 V
    Luo等[24] (PANS) ($ {f_{\text{k}}} $ = 0.5) 0.208 92.8 0.49 1.35 1.47 V
    Luo等[24] (SST-DES) 0.203 86.4 1.46 1.01 0.89 V
    D'Alessandro等[30] (SA-DES) 0.215 89.28 0.850 1.2025 1.077 V
    D'Alessandro等[30] (SA-IDDES) 0.222 87.0 1.427 1.0235 0.878 U
    D'Alessandro等[30] (v2-f DES) 0.214 86.4 1.678 0.9857 0.829 U
    DownLoad: CSV

    表 3  监测点坐标信息

    Table 3.  Coordinate information of the probes.

    监测点编号 监测点坐标
    $(x_1 /D, x_2/D)$
    监测点对应
    的$ {y^ + } $值
    P1 (0.20, 0.560) 30.5
    P2 (0.30, 0.572) 47.1
    P3 (0.40, 0.584) 67.0
    P4 (0.50, 0.595) 89.4
    P5 (0.60, 0.607) 114.0
    P6 (0.70, 0.619) 140.1
    P7 (0.80, 0.631) 167.4
    P8 (0.90, 0.643) 195.5
    P9 (1.00, 0.655) 224.3
    P10 (1.10, 0.666) 253.5
    P11 (1.20, 0.678) 283.3
    P12 (1.30, 0.690) 313.5
    P13 (0.71, 0.660) 151.4
    P14 (0.69, 0.520) 117.4
    P15 (2.00, 0.590) 511.4
    P16 (1.00, 0.0) 161.3
    P17 (2.00, 0.0) 483.9
    P18 (3.00, 0.0) 806.5
    DownLoad: CSV

    表 4  当$ {\varGamma _{{\text{LES}}}} $位于剪切层小尺度K-H不稳定性结构发生区域内时, 相关流场统计量的数值结果

    Table 4.  Numerical results for flow statistic characteristics when $ {\varGamma _{{\text{LES}}}} $ is located in the K-H instability region of the shear layer.

    $ {\varGamma _{{\text{RANS}}}} $ $ {\varGamma _{{\text{LES}}}} $ $ {\bar f_{{\text{vs}}}} $ ${\bar f_{{\text{kh}}}}$ $ {\phi _{\text{s}}}/({\,^\circ }) $ $ {{{L_{\text{r}}}} \mathord{\left/ {\vphantom {{{L_{\text{r}}}} D}} \right. } D} $ $ {C_{\text{d}}} $ $ - {C_{{\text{pb}}}} $ 形状
    $ {r_{{\text{k1}}}} $ $ y_{{\text{RANS}}}^ + $ $ {r_{{\text{k2}}}} $ $ y_{{\text{LES}}}^{+} $
    0.9302 7.9 0.1556 105.8 0.219 1.38 88.1 1.05 1.14 1.12 V
    0.6364 13.3 0.221 1.23 88.1 1.07 1.14 1.09 V
    0.5951 14.9 0.221 1.35 87.7 1.19 1.12 1.04 V
    0.4923 18.4 0.222 1.30 88.1 1.03 1.15 1.08 V
    0.4635 20.4 0.222 1.18 87.8 1.22 1.12 1.03 V
    0.3898 27.1 0.223 1.23 87.0 1.32 1.12 0.99 U
    0.3134 38.4 0.224 1.16 86.6 1.48 1.10 0.96 U
    0.2973 41.7 0.220 1.21 87.1 1.32 1.10 1.00 U
    0.2546 49.2 0.223 1.00 88.0 1.14 1.13 1.06 V
    0.1983 72.7 0.221 1.06 88.1 1.01 1.15 1.12 V
    0.1713 91.2 0.226 1.21 86.6 1.46 1.10 0.96 U
    0.9302 7.9 0.1484 113.9 0.218 1.13 88.0 1.12 1.14 1.06 V
    0.6364 13.3 0.221 1.17 88.4 1.00 1.16 1.13 V
    0.5951 14.9 0.220 1.30 87.8 1.18 1.12 1.04 V
    0.4923 18.4 0.224 1.23 87.1 1.32 1.15 1.00 V
    0.4635 20.4 0.224 1.26 86.5 1.48 1.09 0.97 U
    0.3898 27.1 0.224 1.01 87.2 1.22 1.12 1.00 V
    0.3134 38.4 0.224 1.11 86.5 1.47 1.08 0.95 U
    0.2973 41.7 0.218 1.16 86.5 1.47 1.10 0.96 U
    0.2546 49.2 0.222 1.00 87.7 1.23 1.12 1.04 V
    0.1983 72.7 0.225 1.14 87.8 1.23 1.14 1.03 V
    0.1713 91.2 0.225 0.99 87.8 1.22 1.12 1.03 V
    DownLoad: CSV

    表 5  当$ {\varGamma _{{\text{LES}}}} $位于剪切层小尺度K-H不稳定性结构发生区域外且在对数律层内时, 相关流场统计量的数值结果

    Table 5.  Numerical results for flow statistic characteristics when $ {\varGamma _{{\text{LES}}}} $ is located in the log-law layer and outside the K-H instability region of the shear layer.

    $ {\varGamma _{{\text{RANS}}}} $ $ {\varGamma _{{\text{LES}}}} $ $ {\bar f_{{\text{vs}}}} $ ${\bar f_{{\text{kh}}}}$ $ {\phi _{\text{s}}}/({\, ^ \circ }) $ $ L_{\text{r}}/D $ $ {C_{\text{d}}} $ $ - {C_{{\text{pb}}}} $ 形状
    $ {r_{{\text{k1}}}} $ $ y_{{\text{RANS}}}^ + $ $ {r_{{\text{k2}}}} $ $ y_{{\text{LES}}}^{+} $
    0.9302 7.9 0.2546 49.2 0.220 1.50 87.8 1.20 1.13 1.05 V
    0.6364 13.3 0.224 1.51 87.3 1.26 1.12 1.02 V
    0.5951 14.9 0.221 1.4 86.7 1.45 1.13 0.98 U
    0.4923 18.4 0.224 1.34 87.7 1.18 1.11 1.06 V
    0.4635 20.4 0.223 1.43 87.0 1.36 1.11 0.99 U
    0.3898 27.1 0.220 1.40 87.7 1.22 1.16 1.04 V
    0.3134 38.4 0.222 1.20 87.3 1.26 1.10 1.01 V
    0.2973 41.7 0.226 1.13 86.4 1.49 1.08 0.96 U
    0.9302 7.9 0.1983 72.7 0.222 1.26 87.2 1.25 1.13 1.02 V
    0.6364 13.3 0.223 1.07 86.6 1.44 1.10 0.97 U
    0.5951 14.9 0.221 1.39 86.8 1.36 1.11 0.98 U
    0.4923 18.4 0.222 1.34 88.1 1.07 1.17 1.10 V
    0.4635 20.4 0.22 1.41 88.0 1.16 1.14 1.06 V
    0.3898 27.1 0.224 1.34 87.1 1.36 1.11 1.00 U
    0.3134 38.4 0.224 1.17 87.8 1.23 1.11 1.03 V
    0.2973 41.7 0.224 1.07 86.5 1.50 1.09 0.95 U
    0.2546 49.2 0.224 1.13 87.0 1.34 1.11 0.99 U
    0.9302 7.9 0.1713 84.6 0.22 1.52 86.5 1.50 1.09 0.97 U
    0.6364 13.3 0.221 1.12 86.9 1.25 1.11 0.99 V
    0.5951 14.9 0.223 1.45 87.1 1.26 1.12 1.00 V
    0.4923 18.4 0.22 1.34 87.5 1.17 1.17 1.04 V
    0.4635 20.4 0.22 1.32 87.9 1.16 1.14 1.06 V
    0.3898 27.1 0.224 1.33 86.9 1.41 1.11 0.98 U
    0.3134 38.4 0.222 1.15 87.0 1.32 1.11 1.00 U
    0.2973 41.7 0.223 1.15 87.8 1.16 1.14 1.05 V
    0.2546 49.2 0.223 1.27 87.2 1.35 1.13 1.00 U
    0.1983 72.7 0.222 1.22 87.8 1.16 1.14 1.05 V
    DownLoad: CSV

    表 6  当$ {\varGamma _{{\text{LES}}}} $位于过渡层时, 相关流场统计量的数值结果

    Table 6.  Numerical results for flow statistic characteristics when $ {\varGamma _{{\text{LES}}}} $ is located in the buffer layer.

    $ {\varGamma _{{\text{RANS}}}} $$ {\varGamma _{{\text{LES}}}} $$ {\bar f_{{\text{vs}}}} $${\bar f_{{\text{kh}}}}$$ {\phi _{\text{s}}}/({\, ^ \circ }) $$ {{{L_{\text{r}}}} \mathord{\left/ {\vphantom {{{L_{\text{r}}}} D}} \right. } D} $$ {C_{\text{d}}} $$ - {C_{{\text{pb}}}} $形状
    $ {r_{{\text{k1}}}} $$ y_{{\text{RANS}}}^ + $$ {r_{{\text{k2}}}} $$ y_{{\text{LES}}}^{+} $
    0.93027.90.733310.40.2221.4887.91.131.121.06V
    0.93027.90.636413.30.2251.4487.61.191.121.02V
    0.733310.40.2171.4587.91.151.131.05V
    0.93027.90.523518.40.2231.3287.31.291.141.01V
    0.733310.40.2211.3786.91.371.080.99U
    0.595114.90.2251.4587.01.391.080.99U
    0.93027.90.463520.40.2211.4487.01.371.121.00U
    0.733310.40.2191.3487.61.161.131.03V
    0.595114.90.2241.4487.51.251.121.02V
    0.523518.40.2241.4786.41.461.120.96U
    0.93027.90.368729.60.2241.4887.41.271.131.02V
    0.595114.90.2241.4887.71.241.031.14V
    0.463520.40.2181.4088.01.081.081.15V
    0.389827.10.2211.4087.11.361.121.00U
    DownLoad: CSV
  • [1]

    Zdravkovich M M 1997 Flow Around Circular Cylinders (Vol. 120) (Oxford: Oxford Science Publication) pp2–7

    [2]

    Pereira F S, Eça L, Vaz G, Girimaji S S 2018 J. Comput. Phys. 363 98Google Scholar

    [3]

    Prasad A, Williamson C H K 1996 Phys. Fluids 8 1347Google Scholar

    [4]

    Williamson C H K 1988 Phys. Fluids 31 3165Google Scholar

    [5]

    Palkin E, Mullyadzhanov R, Hadžiabdić M, Hanjalić K 2016 Flow Turbul. Combust. 97 1017Google Scholar

    [6]

    Xia M, Karniadakis G E 1997 Proceedings of the First AFOSR International Conference on DNS/LES Ruston, LA, August 4–8, 1997 p129

    [7]

    Ma X, Karamanos G S, Karniadakis G E 2000 J. Fluid Mech. 410 29Google Scholar

    [8]

    Tremblay F 2001 Ph. D. Dissertation (Munich: Technical University of Munich

    [9]

    Dong S, Karniadakis G E, Ekmekci A, Rockwell D 2006 J. Fluid Mech. 569 185Google Scholar

    [10]

    Lehmkuhl O, Rodr´ıguez I, Borrell R, Chiva J, Oliva A 2013 Phys. Fluids 25 085109Google Scholar

    [11]

    Song B Y, Ping H, Zhu H B, Zhou D, Bao Y, Cao Y, Han Z L 2022 Phys. Fluids 34 15109Google Scholar

    [12]

    Ooi A, Lu W, Chan L, Cao Y, Leontini J, Skvortsov A 2022 Int. J. Heat Fluid Flow 96 108982Google Scholar

    [13]

    Kim S E 2012 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9–12, 2006 p1418

    [14]

    Beaudan P, Moin P 1994 Numerical Experiments on the Flow Past a Circular Cylinder at Sub-critical Reynolds Number (Stanford: Stanford University) p57

    [15]

    Breuer M 1998 Int. J. Numer. Methods Fluids 28 1281Google Scholar

    [16]

    Kravchenko A G, Moin P 2000 Phys. Fluids 12 403Google Scholar

    [17]

    Franke J, Frank W 2002 J. Wind Eng. Ind. Aerodyn. 90 1191Google Scholar

    [18]

    Parnaudeau P, Carlier J, Heitz D, Lamballais E 2008 Phys. Fluids 20 085101Google Scholar

    [19]

    Wong J, Png E 2010 Adv. Fluid Mech. 8 79Google Scholar

    [20]

    Afgan I, Kahil Y, Benhamadouche S, Sagaut P 2011 Phys. Fluids 23 075101Google Scholar

    [21]

    Lysenko D A, Ertesvåg I S, Rian K E 2012 Flow Turbul. Combust. 89 491Google Scholar

    [22]

    Tian G, Xiao Z 2020 AIP Adv. 10 85321Google Scholar

    [23]

    郭志远, 虞培祥, 欧阳华 2021 上海交通大学学报 55 924

    Guo Z Y, Yu P X, Ouyang H 2021 J. Shanghai Jiaotong Univ. Sci. 55 924

    [24]

    Luo D H, Yan C, Liu H K, Zhao R 2014 J. Wind Eng. Ind. Aerodyn. 134 65Google Scholar

    [25]

    刘跃, 管小荣, 徐诚 2019 空气动力学学报 37 530Google Scholar

    Liu Y, Guan X R, Xu C 2019 Acta Aero. Sin. 37 530Google Scholar

    [26]

    Kořínek T, Tisovský T, Fraňa K 2021 Int. J. Therm. Sci. 169 106977Google Scholar

    [27]

    Lourenco L M, Shih C 1993 Characteristics of the Plane Turbulent Near-wake of a Circular Cylinder, A Particle Image Velocimetry Study (Data Taken From Beaudan and Moin, 1994

    [28]

    Spalart P R 2000 Int. J. Heat Fluid Flow 21 252Google Scholar

    [29]

    Fröhlich J, Von Terzi D 2008 Prog. Aerosp. Sci. 44 349Google Scholar

    [30]

    D'Alessandro V, Montelpare S, Ricci R 2016 Comput. Fluids 136 152Google Scholar

    [31]

    Gritskevich M S, Garbaruk A, Schütze J, Menter F R 2012 Flow Turbul. Combust. 88 431Google Scholar

    [32]

    Menter F R, Kuntz M, Langtry R 2003 Turbul. Heat Mass Transf. 4 625

    [33]

    Spalart P R, Deck S, Shur M L, Squires K D, Strelets M K, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181Google Scholar

    [34]

    Shur M L, Spalart P R, Strelets M K, Travin A K 2008 Int. J. Heat Fluid Flow 29 1638Google Scholar

    [35]

    Johansen S T, Wu J, Shyy W 2004 Int. J. Heat Fluid flow 25 10Google Scholar

    [36]

    Breuer M, Jovičić N, Mazaev K 2003 Int. J. Numer. Methods Fluids 41 357Google Scholar

    [37]

    Reddy K R, Ryon J A, Durbin P A 2014 Int. J. Heat Fluid Flow 50 103Google Scholar

    [38]

    宋汉奇, 张恺玲, 马鸣 2022 北京航空航天大学学报 36 2482Google Scholar

    Song H Q, Zhang K L, Ma M 2022 J. B. Univ. Aeronaut Astronaut 36 2482Google Scholar

    [39]

    Larsson J, Kawai S, Bodart J, Bermejo-Moreno I 2016 Mech. Eng. Rev. 3 15Google Scholar

    [40]

    Pope S B 2000 Turbulent Flows (New York: Cornell University) pp290–299

    [41]

    Han Y Y, He Y Y, Le J L 2020 AIAA J. 58 712Google Scholar

    [42]

    Lacombe F, Pelletier D, Garon A 2019 AIAA SciTech Forum San Diego, California, January 7–11, 2019 p2329

    [43]

    Norberg C 1994 J. Fluid Mech. 258 287Google Scholar

    [44]

    Peng S H, Davidson L, Holmberg S 1994 J. Fluids Eng. 119 867Google Scholar

    [45]

    Ong L, Wallace J 1996 Exp. Fluids 20 441Google Scholar

  • [1] Sun Wei, Lü Chong, Lei Zhu, Zhong Jia-Yong. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability. Acta Physica Sinica, 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [2] Chen Jiang-Li, Chen Shao-Qiang, Ren Feng, Hu Hai-Bao. Artificially intelligent control of drag reduction around a circular cylinder based on wall pressure feedback. Acta Physica Sinica, 2022, 71(8): 084701. doi: 10.7498/aps.71.20212171
    [3] Cao Yi-Gang, Fu Meng-Meng, Yang Xi-Chang, Li Deng-Feng, Wang Xiao-Xia. Effect of thermal conduction on Kelvin-Helmholtz instability in straight pipe with different cross-sections. Acta Physica Sinica, 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [4] Shi Qi-Chen, Zhao Zhi-Jie, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun. Mechanism of suppressing Kelvin-Helmholtz instability by flowing magnetic field. Acta Physica Sinica, 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [5] Sun Wei, An Wei-Ming, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on laser-driven Kelvin-Helmholtz instability. Acta Physica Sinica, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [6] Liu Ying, Chen Zhi-Hua, Zheng Chun. Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid. Acta Physica Sinica, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [7] Li Shan, Jiang Nan, Yang Shao-Qiong. Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry. Acta Physica Sinica, 2019, 68(7): 074702. doi: 10.7498/aps.68.20181875
    [8] Cheng Xiao-Xiang, Zhao Lin, Ge Yao-Jun. Field measurements on flow past a circular cylinder in transcritical Reynolds number regime. Acta Physica Sinica, 2016, 65(21): 214701. doi: 10.7498/aps.65.214701
    [9] Bi Hai-Liang, Wei Lai, Fan Dong-Mei, Zheng Shu, Wang Zheng-Xiong. Excitations of tearing mode and Kelvin-Helmholtz mode in rotating cylindrical plasmas. Acta Physica Sinica, 2016, 65(22): 225201. doi: 10.7498/aps.65.225201
    [10] Yin Ji-Fu, You Yun-Xiang, Li Wei, Hu Tian-Qun. Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force. Acta Physica Sinica, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [11] Wang Li-Feng, Ye Wen-Hua, Fan Zheng-Feng, Li Ying-Jun. Study on the Kelvin-Helmholtz instability in two-dimensional incompressible fluid. Acta Physica Sinica, 2009, 58(7): 4787-4792. doi: 10.7498/aps.58.4787
    [12] Wang Li-Feng, Teng Ai-Ping, Ye Wen-Hua, Fan Zheng-Feng, Tao Ye-Sheng, Lin Chuan-Dong, Li Ying-Jun. Velocity gradient in Kelvin-Helmholtz instability for supersonic fluid. Acta Physica Sinica, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [13] Wang Li-Feng, Ye Wen-Hua, Fan Zheng-Feng, Sun Yan-Qian, Zheng Bing-Song, Li Ying-Jun. Kelvin-Helmholtz instability in compressible fluids. Acta Physica Sinica, 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
    [14] Wang Li-Feng, Ye Wen-Hua, Li Ying-Jun. Second harmonic generation by the Kelvin-Helmholtz instability for two-dimensional incompressible fluid. Acta Physica Sinica, 2008, 57(5): 3038-3043. doi: 10.7498/aps.57.3038
    [15] Pang Jing, Chen Xiao-Gang, Song Jin-Bao. Second-order Stokes wave solutions for intefacial waves in three-layer stratified fluid with background current. Acta Physica Sinica, 2007, 56(8): 4733-4741. doi: 10.7498/aps.56.4733
    [16] Wei Xin-Hua, Zhou Guo-Cheng, Cao Jin-Bin, Li Liu-Yuan. Low-frequency electromagnetic instabilities in a collisionless current sheet:magnetohydrodynamic model. Acta Physica Sinica, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [17] Guo Yuan-Yuan, Chen Xiao-Song. Investigation of phase instability in the binary Gaussian core model. Acta Physica Sinica, 2005, 54(12): 5755-5762. doi: 10.7498/aps.54.5755
    [18] Chen Yan-Ping, Wang Chuan-Bing, Zhou Guo-Cheng. Maser instability driven by an electron beam with losscone-beam distribution. Acta Physica Sinica, 2005, 54(7): 3221-3227. doi: 10.7498/aps.54.3221
    [19] ZHANG JIA-TAI, NIE XIAO-BO, SU XIU-MIN. NUMERICAL SIMULATION STUDIES ON FILAMENTATION IN COHERENCE AND INCOHERENCE LASER. Acta Physica Sinica, 1994, 43(1): 52-63. doi: 10.7498/aps.43.52
    [20] . Acta Physica Sinica, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
Metrics
  • Abstract views:  2693
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2023
  • Accepted Date:  08 December 2023
  • Available Online:  12 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回