-
In this study, the thermophysical properties and rapid solidification mechanism of highly undercooled liquid Zr60Ni25Al15 alloy are investigated through the electrostatic levitation technique. The maximum undercooling of this alloy reaches 316 K (0.25TL). Both density and surface tension display a linear relationship with temperature, while viscosity is related to temperature exponentially. When alloy undercooling is less than 259 K, two significant recalescence events are observed during solidification, corresponding to the formation of pseudobinary (Zr6Al2Ni + Zr5Ni4Al) eutectic and ternary (Zr6Al2Ni + Zr5Ni4Al + Zr2Ni) eutectic. The growth velocity of the binary eutectic phase gradually increases with further undercooling and reaches a maximum undercooling value of 259 K. In contrast, once undercooling exceeds 259 K, a single recalescence event occurs, leading to the independent nucleation of all three compound phases from alloy melt and the rapid growth of a ternary anomalous eutectic structure. Notably, the growth velocity of the ternary eutectic phase exhibits a gradual decline with further undercooling. This diminishing trend of the growth velocity suggests that further undercooling might entirely suppress crystal growth dynamically at a threshold of 385 K. With classical nucleation theory and the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model, the onsets of crystallization for the three phases are calculated, thereby constructing a time–temperature-transformation (TTT) diagram. This diagram elucidates the competitive nucleation among the three phases in the undercooled melt. Both theoretical and experimental evidence reveal that Zr6Al2Ni phase is primarily nucleated at lower undercooling levels, whereas under higher cooling condition, it is possible for all three phases to nucleate simultaneously.
-
Keywords:
- electrostatic levitation /
- liquid metal /
- rapid solidification /
- eutectic growth
[1] Peng H L, Yang F, Liu S T, Holland-Moritz D, Kordel T, Hansen T, Voigtmann T 2019 Phys. Rev. B 100 104202Google Scholar
[2] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2013 物理学报 62 056601Google Scholar
Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601Google Scholar
[3] Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G, Meyer A 2015 Phys. Rev. B 91 214203Google Scholar
[4] Hou J X, Guo H X, Sun J J, Tian X L, Zhan C W, Qin X B, Chen X C 2006 Phys. Lett. A 358 171Google Scholar
[5] Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801Google Scholar
[6] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波 2017 物理学报 66 136401Google Scholar
Lin M J, Chang J, Wu Y H, Xu S S, Wei B B 2017 Acta Phys. Sin. 66 136401Google Scholar
[7] Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902Google Scholar
[8] Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992Google Scholar
[9] Johnson M L, Mauro N A, Vogt A J, Blodgett M E, Pueblo C, Kelton K F 2014 J. Non-Cryst. Solids. 405 211Google Scholar
[10] Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431Google Scholar
[11] Li Y H, Zhang W, Dong C, Qiang J B, Makino A, Inoue A 2010 Intermetallics 18 1851Google Scholar
[12] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcil J 2008 Acta Mater. 56 1785Google Scholar
[13] Hua N B, Zhang T 2014 J. Alloys Compd. 602 339
[14] Li C F, Saida J, Matsushida M, Inoue A 2000 Mater. Lett. 44 80Google Scholar
[15] Basuki S W, Yang F, Gill E, Rätzke K, Meyer A, Faupel F 2017 Phys. Rev. B 95 024301Google Scholar
[16] Li Y, Xu J 2017 Corros. Sci. 128 73Google Scholar
[17] Hu L, Wang H P, Li L H, Wei B 2012 Chin. Phys. Lett. 29 064101Google Scholar
[18] Ishikawa T, Paradis P F, Yoda S 2001 Rev. Sci. Instrum. 72 2490Google Scholar
[19] Chung S K, Thiessen D B, Rhim W K 1996 Rev. Sci. Instrum. 67 3175Google Scholar
[20] Jeon S, Kang D H, Lee Y H, Lee S, Lee G W 2016 J. Chem. Phys. 145 174504Google Scholar
[21] Takeuchi A, Kato H, Inoue A 2010 Intermetallics 18 406Google Scholar
[22] 王磊, 胡亮, 杨尚京, 魏炳波 2018 中国有色金属学报 28 1816Google Scholar
Wang L, Hu L, Yang S J, Wei B 2018 Chin. J. Nonferrous Met. 28 1816Google Scholar
[23] Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501Google Scholar
[24] Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101Google Scholar
[25] Galenko P K, Wonneberger R, Koch S, Ankudinov V, Kharanzhevskiy E, Rettenmayr M 2020 J. Cryst. Growth. 532 125411Google Scholar
[26] Fuss T, Ray C S, Lesher C E, Day D E 2006 J. Non-Cryst. Solids 352 2073Google Scholar
[27] Fokin V M, Nascimento M, Zanotto E D 2005 J. Non-Cryst. Solids 351 789Google Scholar
[28] Torrens-Serra J, Rodríguez-Viejo J, Clavaguera-Mora M T 2007 Phys. Rev. B 76 214111Google Scholar
[29] Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar
[30] Zhao J F, Li M X, H. Wang H P, Wei B 2022 Acta Mater. 237 118127Google Scholar
[31] Alford T L, Gale W F, Totemeir T C 2015 Smithells Metals Reference Book (Elsevier) p8
[32] Vinet B, Magnusson L, Fredriksson H, Desré P J 2002 J. Colloid Interface Sci. 255 363Google Scholar
[33] Maiorova A V, Kulikova T V, Ryltsev R E 2021 Philos. Mag. 101 1709Google Scholar
-
图 3 静电悬浮条件下液态Zr60Ni25Al15合金的凝固过程温度曲线分析 (a) ΔT = 56 K; (b) ΔT = 316 K; (c) 二相共晶生长速度和过冷度的关系, ΔT < ΔTC = 259 K; (d) 三元共晶生长速度和过冷度的关系, $ \Delta T \geqslant \Delta {T_{\text{C}}} = 259{\text{ K}} $
Figure 3. Solidification characteristics of Zr60Ni25Al15 alloy under electrostatic levitation condition: (a) ΔT = 56 K; (b) ΔT = 316 K; (c) binary eutectic growth velocity versus undercooling, ΔT < ΔTC = 259 K; (d) ternary eutectic growth velocity versus undercooling, ΔT ≥ ΔTC = 259 K
-
[1] Peng H L, Yang F, Liu S T, Holland-Moritz D, Kordel T, Hansen T, Voigtmann T 2019 Phys. Rev. B 100 104202Google Scholar
[2] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2013 物理学报 62 056601Google Scholar
Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013 Acta Phys. Sin. 62 056601Google Scholar
[3] Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G, Meyer A 2015 Phys. Rev. B 91 214203Google Scholar
[4] Hou J X, Guo H X, Sun J J, Tian X L, Zhan C W, Qin X B, Chen X C 2006 Phys. Lett. A 358 171Google Scholar
[5] Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801Google Scholar
[6] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波 2017 物理学报 66 136401Google Scholar
Lin M J, Chang J, Wu Y H, Xu S S, Wei B B 2017 Acta Phys. Sin. 66 136401Google Scholar
[7] Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902Google Scholar
[8] Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992Google Scholar
[9] Johnson M L, Mauro N A, Vogt A J, Blodgett M E, Pueblo C, Kelton K F 2014 J. Non-Cryst. Solids. 405 211Google Scholar
[10] Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431Google Scholar
[11] Li Y H, Zhang W, Dong C, Qiang J B, Makino A, Inoue A 2010 Intermetallics 18 1851Google Scholar
[12] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcil J 2008 Acta Mater. 56 1785Google Scholar
[13] Hua N B, Zhang T 2014 J. Alloys Compd. 602 339
[14] Li C F, Saida J, Matsushida M, Inoue A 2000 Mater. Lett. 44 80Google Scholar
[15] Basuki S W, Yang F, Gill E, Rätzke K, Meyer A, Faupel F 2017 Phys. Rev. B 95 024301Google Scholar
[16] Li Y, Xu J 2017 Corros. Sci. 128 73Google Scholar
[17] Hu L, Wang H P, Li L H, Wei B 2012 Chin. Phys. Lett. 29 064101Google Scholar
[18] Ishikawa T, Paradis P F, Yoda S 2001 Rev. Sci. Instrum. 72 2490Google Scholar
[19] Chung S K, Thiessen D B, Rhim W K 1996 Rev. Sci. Instrum. 67 3175Google Scholar
[20] Jeon S, Kang D H, Lee Y H, Lee S, Lee G W 2016 J. Chem. Phys. 145 174504Google Scholar
[21] Takeuchi A, Kato H, Inoue A 2010 Intermetallics 18 406Google Scholar
[22] 王磊, 胡亮, 杨尚京, 魏炳波 2018 中国有色金属学报 28 1816Google Scholar
Wang L, Hu L, Yang S J, Wei B 2018 Chin. J. Nonferrous Met. 28 1816Google Scholar
[23] Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501Google Scholar
[24] Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101Google Scholar
[25] Galenko P K, Wonneberger R, Koch S, Ankudinov V, Kharanzhevskiy E, Rettenmayr M 2020 J. Cryst. Growth. 532 125411Google Scholar
[26] Fuss T, Ray C S, Lesher C E, Day D E 2006 J. Non-Cryst. Solids 352 2073Google Scholar
[27] Fokin V M, Nascimento M, Zanotto E D 2005 J. Non-Cryst. Solids 351 789Google Scholar
[28] Torrens-Serra J, Rodríguez-Viejo J, Clavaguera-Mora M T 2007 Phys. Rev. B 76 214111Google Scholar
[29] Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar
[30] Zhao J F, Li M X, H. Wang H P, Wei B 2022 Acta Mater. 237 118127Google Scholar
[31] Alford T L, Gale W F, Totemeir T C 2015 Smithells Metals Reference Book (Elsevier) p8
[32] Vinet B, Magnusson L, Fredriksson H, Desré P J 2002 J. Colloid Interface Sci. 255 363Google Scholar
[33] Maiorova A V, Kulikova T V, Ryltsev R E 2021 Philos. Mag. 101 1709Google Scholar
Catalog
Metrics
- Abstract views: 1739
- PDF Downloads: 84
- Cited By: 0