-
This study employs a phase-field–lattice Boltzmann coupled model to investigate the effect of forced convection on the lamellar eutectic growth of Al-Cu alloys. Results indicate that forced convection tilts lamellar structures toward the flow direction, enhances solute diffusion, and causes solute concentration to deviate asymmetrically from the solid phase centerline. Greater convection intensity leads to more pronounced interface asymmetry. Increased undercooling weakens convective effects and reduces tilt angles, while larger lamellar widths diminish convective influence and yield smaller tilt angles. The study reveals a synergistic regulatory mechanism between these factors. Simulations indicate that without convection, layers grow vertically with solute symmetrically distributed along the solid centerline. Interlayer lateral diffusion promotes synergistic α-β phase growth. Forced convection (along the x+ direction) enhances solute transport in the flow direction while weakening counter-current transport. This shifts the triple point and creates asymmetric solute distribution—e.g., higher α phase concentration to the left of the centerline—causing layer tilting. Increasing convection intensity (expressed as A/A0, where A0 corresponds to the coefficient for a 0.5° tilted layer) exacerbates asymmetry at the solid-liquid interface and reduces the distance between the interface peak and the triple point. Higher undercooling (0.8-1.4 K) enhances growth driving force and reduces solute trapping capacity, weakening convective effects and decreasing the tilt angle. When undercooling is minimal and convection is strong, the tilt angle significantly increases. As the interlayer spacing (6.4-19.2 μm) increases, solute exchange at the interface becomes more frequent, convective interference weakens, and the tilt angle decreases; under conditions of small spacing and strong convection, solutes are easily washed away, inhibiting lamellar growth. In summary, forced convection directly alters the morphology of the solute transport control layer. Supercooling and interlayer width indirectly modulate convective effects by influencing growth driving forces and interfacial solute exchange. These three factors synergistically regulate eutectic growth, providing a theoretical basis for controlling eutectic microstructure.
-
Keywords:
- Eutectic growth /
- Forced convection /
- Phase field method /
- Al-Cu alloy
-
[1] Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K, Li X Y, Ringer S, Ferry M 2021 Sci.Adv 7 eabf3039
[2] Xu X T, Song Z, Wang K L, Li H Q, Pan Y, Hou H, Zhao Y H 2025 J. Mater. Sci. Technol 219 307
[3] Chen L Q, Zhao Y H 2022 Prog. Mater. Sci 124 100868
[4] Pei X L, Pei J Q, Hou H, Zhao Y H 2025 Npj Comput. Mater. 11 27
[5] Xu J J 2017 Interfacial wave theory of pattern formation in solidification (Cham, Switzerland: Springer)
[6] Kurz W, Fisher D J 1992 Fundamentals of Solidification (Switzerland, Trans Tech Publications)
[7] Akamatsu S, Plapp M 2016 CURR OPIN SOLID ST M. 20 46
[8] Xin T Z, Tang S, Ji F, Cui L Q, He B B, Lin X, Tian X L, Hou H, Zhao Y H, Ferry M 2022 Acta Mater. 239 118248.
[9] Jackson K A, Hunt J D 1988 Dynamics of curved fronts (Marseille, Academic Press)
[10] Dantzig J A, Rappaz M. Solidification (EPFL Lausanne, Switzerland, 2009) pp249-285
[11] XIONG S M, DU J L, GUO Z P, YANG M H, WU M W, BI C, CAO Y Y 2017 Acta Metall. Sin. 54 174
[12] Akamatsu S, Lee K, Losert W 2006 J. Cryst. Growth 289 331
[13] Zhao Y H, Xing H, Zhang L J, Huang H B, Sun D K, Dong X L, Shen Y X, Wang J C 2023 ACTA METALL SIN-ENGL 36 1749.
[14] Drolet F, Elder K R, Grant M, Kosterlitz J M 2000 Phys. Rev. E 61 6705
[15] Kim S G, Kim W T, Suzuki T, Ode M 2004 J. Cryst. Growth 261 135
[16] Zhang A, Guo Z, Xiong S 2017 CHINA FOUNDRY 14 373
[17] Parisi A, Plapp M 2008 Acta Mater. 56 1348
[18] N Moelans, B Blanpain, P Wollants 2008 Calphad 32 268
[19] Du J L, Zhang A, Guo Z P, Yang M H, Li M, Liu F, Xiong, S M 2018 Acta Materialia, 161 35
[20] Zhao Y H 2023 npj Comput. Mater. 9 94.
[21] Zhao Y H, Xin T Z, Tang S, Wang H F, Fang X D, Hou H 2024 MRS Bull. 49 613
[22] Y.H. Zhao 2024 MGE Advances 2 e44.
[23] Siquieri R, Emmerich H 2011 Philos. Mag. 91 45
[24] Boettinger W J, Warren J A, Beckermann C, Karma A 2002 Annu. Rev. Mater. Res 32 163
[25] Sun Y, Beckermann C 2009 J.Cryst.Growth 311 4447
[26] Tong X, Beckermann C, Karma A, Li Q 2001 Phys. Rev. E 63 061601
[27] Zhang A, Du J L, Guo Z P, Xiong S M 2018 Phys. Rev. E 98 043301
[28] Zhang A, Guo Z P, Xiong S M 2018 Phys. Rev. E 97 053302
[29] Chen W P, Hou H, Zhang Y T, Zhao Y H 2023 Chinese Phys. B 32 118103
[30] Miller W, Succi S, Mansutti D 2001 Phys. Rev. Lett. 86 3578.
[31] Medvedev D, Kassner K 2005 Phys. Rev. E 72 056703
[32] Selzer M, Jainta M, Nestler B 2009 Phys. Status Solidi B. 246 1197
[33] Feng L, Feng X J, Lu Y, Zhu C S, Jia B B 2017 Comput. Mater. Sci 137 171
[34] Zhang A, Liu F, Du J L, Guo Z P, Wang Q G, Xiong S M 2019 Int. J. Heat Mass Transfer 145 118778
[35] Zhang A, Du J L, Guo Z P, Wang Q G, Xiong S M 2019 METALL MATER TRANS B 50 517
[36] Zhang A, Du J L, Guo Z P, Wang Q G, Xiong S M 2019 Scr. Mater. 165 64
[37] Yang Q, Zhang A, Jiang B, Gao L, Guo Z P, Song J F, Xiong S M, Pan F S 2022 Comput. Math. Appl. 114 83
[38] Zhang A, Du J L, Guo Z P, Wang Q G, Xiong S M 2020 Phys. Rev. E 101 061301
[39] Kim S G, Kim W T, Suzuki T, Ode M 2004 J. Cryst. Growth 261 135
[40] Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[41] Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439
[42] Lan C W, Shih C J 2004 J. Cryst. Growth 264 472
[43] Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X 1999 J. Comput. Phys. 154 468
[44] Guo Z P, Xiong S M 2015 Comput. Phys. Commun. 190 89
计量
- 文章访问数: 21
- PDF下载量: 0
- 被引次数: 0








下载: