搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强制对流作用下Al-17.3at% Cu合金层片状共晶生长相场法研究

钟世伟 陈伟鹏 赵宇宏

引用本文:
Citation:

强制对流作用下Al-17.3at% Cu合金层片状共晶生长相场法研究

钟世伟, 陈伟鹏, 赵宇宏

Phase-Field Study of Lamellar Eutectic Growth in an Al- 17.3at%Cu Alloy under Forced Convection

ZHONG Shiwei, CHEN Weipeng, ZHAO Yuhong
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文采用相场-格子玻尔兹曼耦合模型,研究了强制对流作用下Al-Cu合金层片状共晶生长行为。结果表明,外部引入的强制对流显著改变了共晶生长形态,使片层生长方向发生倾斜,且倾斜方向与流速方向一致。熔体流动增大了溶质扩散速度,溶质浓度偏离固相中心线,不再关于固相中心线对称分布。随着对流强度增大,界面不对称性加剧。此外,过冷度增强会增大生长驱动力,减弱对流效应,使片层倾斜角度减小,同时,片层宽度增大,也会减弱对流效应,使片层倾斜角度减小。该研究揭示了强制对流与热物性参数共同作用下层片状共晶生长的协同调控机制。
    This study employs a phase-field–lattice Boltzmann coupled model to investigate the effect of forced convection on the lamellar eutectic growth of Al-Cu alloys. Results indicate that forced convection tilts lamellar structures toward the flow direction, enhances solute diffusion, and causes solute concentration to deviate asymmetrically from the solid phase centerline. Greater convection intensity leads to more pronounced interface asymmetry. Increased undercooling weakens convective effects and reduces tilt angles, while larger lamellar widths diminish convective influence and yield smaller tilt angles. The study reveals a synergistic regulatory mechanism between these factors. Simulations indicate that without convection, layers grow vertically with solute symmetrically distributed along the solid centerline. Interlayer lateral diffusion promotes synergistic α-β phase growth. Forced convection (along the x+ direction) enhances solute transport in the flow direction while weakening counter-current transport. This shifts the triple point and creates asymmetric solute distribution—e.g., higher α phase concentration to the left of the centerline—causing layer tilting. Increasing convection intensity (expressed as A/A0, where A0 corresponds to the coefficient for a 0.5° tilted layer) exacerbates asymmetry at the solid-liquid interface and reduces the distance between the interface peak and the triple point. Higher undercooling (0.8-1.4 K) enhances growth driving force and reduces solute trapping capacity, weakening convective effects and decreasing the tilt angle. When undercooling is minimal and convection is strong, the tilt angle significantly increases. As the interlayer spacing (6.4-19.2 μm) increases, solute exchange at the interface becomes more frequent, convective interference weakens, and the tilt angle decreases; under conditions of small spacing and strong convection, solutes are easily washed away, inhibiting lamellar growth. In summary, forced convection directly alters the morphology of the solute transport control layer. Supercooling and interlayer width indirectly modulate convective effects by influencing growth driving forces and interfacial solute exchange. These three factors synergistically regulate eutectic growth, providing a theoretical basis for controlling eutectic microstructure.
  • [1]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K, Li X Y, Ringer S, Ferry M 2021 Sci.Adv 7 eabf3039

    [2]

    Xu X T, Song Z, Wang K L, Li H Q, Pan Y, Hou H, Zhao Y H 2025 J. Mater. Sci. Technol 219 307

    [3]

    Chen L Q, Zhao Y H 2022 Prog. Mater. Sci 124 100868

    [4]

    Pei X L, Pei J Q, Hou H, Zhao Y H 2025 Npj Comput. Mater. 11 27

    [5]

    Xu J J 2017 Interfacial wave theory of pattern formation in solidification (Cham, Switzerland: Springer)

    [6]

    Kurz W, Fisher D J 1992 Fundamentals of Solidification (Switzerland, Trans Tech Publications)

    [7]

    Akamatsu S, Plapp M 2016 CURR OPIN SOLID ST M. 20 46

    [8]

    Xin T Z, Tang S, Ji F, Cui L Q, He B B, Lin X, Tian X L, Hou H, Zhao Y H, Ferry M 2022 Acta Mater. 239 118248.

    [9]

    Jackson K A, Hunt J D 1988 Dynamics of curved fronts (Marseille, Academic Press)

    [10]

    Dantzig J A, Rappaz M. Solidification (EPFL Lausanne, Switzerland, 2009) pp249-285

    [11]

    XIONG S M, DU J L, GUO Z P, YANG M H, WU M W, BI C, CAO Y Y 2017 Acta Metall. Sin. 54 174

    [12]

    Akamatsu S, Lee K, Losert W 2006 J. Cryst. Growth 289 331

    [13]

    Zhao Y H, Xing H, Zhang L J, Huang H B, Sun D K, Dong X L, Shen Y X, Wang J C 2023 ACTA METALL SIN-ENGL 36 1749.

    [14]

    Drolet F, Elder K R, Grant M, Kosterlitz J M 2000 Phys. Rev. E 61 6705

    [15]

    Kim S G, Kim W T, Suzuki T, Ode M 2004 J. Cryst. Growth 261 135

    [16]

    Zhang A, Guo Z, Xiong S 2017 CHINA FOUNDRY 14 373

    [17]

    Parisi A, Plapp M 2008 Acta Mater. 56 1348

    [18]

    N Moelans, B Blanpain, P Wollants 2008 Calphad 32 268

    [19]

    Du J L, Zhang A, Guo Z P, Yang M H, Li M, Liu F, Xiong, S M 2018 Acta Materialia, 161 35

    [20]

    Zhao Y H 2023 npj Comput. Mater. 9 94.

    [21]

    Zhao Y H, Xin T Z, Tang S, Wang H F, Fang X D, Hou H 2024 MRS Bull. 49 613

    [22]

    Y.H. Zhao 2024 MGE Advances 2 e44.

    [23]

    Siquieri R, Emmerich H 2011 Philos. Mag. 91 45

    [24]

    Boettinger W J, Warren J A, Beckermann C, Karma A 2002 Annu. Rev. Mater. Res 32 163

    [25]

    Sun Y, Beckermann C 2009 J.Cryst.Growth 311 4447

    [26]

    Tong X, Beckermann C, Karma A, Li Q 2001 Phys. Rev. E 63 061601

    [27]

    Zhang A, Du J L, Guo Z P, Xiong S M 2018 Phys. Rev. E 98 043301

    [28]

    Zhang A, Guo Z P, Xiong S M 2018 Phys. Rev. E 97 053302

    [29]

    Chen W P, Hou H, Zhang Y T, Zhao Y H 2023 Chinese Phys. B 32 118103

    [30]

    Miller W, Succi S, Mansutti D 2001 Phys. Rev. Lett. 86 3578.

    [31]

    Medvedev D, Kassner K 2005 Phys. Rev. E 72 056703

    [32]

    Selzer M, Jainta M, Nestler B 2009 Phys. Status Solidi B. 246 1197

    [33]

    Feng L, Feng X J, Lu Y, Zhu C S, Jia B B 2017 Comput. Mater. Sci 137 171

    [34]

    Zhang A, Liu F, Du J L, Guo Z P, Wang Q G, Xiong S M 2019 Int. J. Heat Mass Transfer 145 118778

    [35]

    Zhang A, Du J L, Guo Z P, Wang Q G, Xiong S M 2019 METALL MATER TRANS B 50 517

    [36]

    Zhang A, Du J L, Guo Z P, Wang Q G, Xiong S M 2019 Scr. Mater. 165 64

    [37]

    Yang Q, Zhang A, Jiang B, Gao L, Guo Z P, Song J F, Xiong S M, Pan F S 2022 Comput. Math. Appl. 114 83

    [38]

    Zhang A, Du J L, Guo Z P, Wang Q G, Xiong S M 2020 Phys. Rev. E 101 061301

    [39]

    Kim S G, Kim W T, Suzuki T, Ode M 2004 J. Cryst. Growth 261 135

    [40]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329

    [41]

    Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439

    [42]

    Lan C W, Shih C J 2004 J. Cryst. Growth 264 472

    [43]

    Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X 1999 J. Comput. Phys. 154 468

    [44]

    Guo Z P, Xiong S M 2015 Comput. Phys. Commun. 190 89

  • [1] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, doi: 10.7498/aps.72.20222439
    [2] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 物理学报, doi: 10.7498/aps.71.20212087
    [3] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟. 物理学报, doi: 10.7498/aps.70.20201457
    [4] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 物理学报, doi: 10.7498/aps.70.20201843
    [5] 张军, 陈文雄, 郑成武, 李殿中. γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟. 物理学报, doi: 10.7498/aps.66.070701
    [6] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, doi: 10.7498/aps.64.148101
    [7] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, doi: 10.7498/aps.64.056401
    [8] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, doi: 10.7498/aps.61.118103
    [9] 张宪刚, 宗亚平, 王明涛, 吴艳. 晶粒生长演变相场法模拟界面表达的物理模型. 物理学报, doi: 10.7498/aps.60.068201
    [10] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, doi: 10.7498/aps.60.040507
    [11] 杨玉娟, 王锦程, 杨根仓, 张玉祥, 朱耀产. 三维多相场数值模拟共晶CBr4-C2Cl6合金在不同抽拉速度下的形态选择. 物理学报, doi: 10.7498/aps.58.2797
    [12] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, doi: 10.7498/aps.58.7802
    [13] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型. 物理学报, doi: 10.7498/aps.57.1084
    [14] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响. 物理学报, doi: 10.7498/aps.57.4585
    [15] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, doi: 10.7498/aps.56.1514
    [16] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟. 物理学报, doi: 10.7498/aps.55.780
    [17] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, doi: 10.7498/aps.55.1341
    [18] 龙文元, 蔡启舟, 陈立亮, 魏伯康. 二元合金等温凝固过程的相场模型. 物理学报, doi: 10.7498/aps.54.256
    [19] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, doi: 10.7498/aps.54.3740
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-13

/

返回文章
返回