-
With the surge in electrical loads and increasing voltage levels, the mechanical performance and thermal stability of insulating paper are facing severe challenges. However, due to the lack of direct scientific theories or simulation guidance, traditional inefficient “trial-and-error” experiments are difficult to effectively develop new types of cellulose composite insulating papers. For solving this problem, in this work we are to enhance the effects of nanoscale zinc oxide (nano-ZnO) on the mechanical and thermal properties of cellulose through molecular dynamics simulations. Initially, we model the nano-ZnO/cellulose composite material , then carry out a microscopic analysis of the mechanical performance and thermal stability of modified cellulose with varying nano-ZnO content, thus determining the optimal ratio of nano-ZnO to cellulose. The results indicate that compared with the outcomes from the unmodified model, the mechanical performance, cohesive energy density, glass transition temperature, and thermal conductivity of the nano-ZnO-modified cellulose model are all improved, with the highest increase in elastic modulus reaching 45.31% and the highest increase in thermal conductivity attaining 41.49%. The addition of nano-ZnO effectively fills the gaps in the fiber network and enhances the interactions between cellulose chains and thermal conduction channels, thereby improving the thermodynamic performance of cellulose. This work provides valuable theoretical references for rapidly preparing modified cellulose insulating papers with excellent thermodynamic performance.
-
Keywords:
- insulating paper /
- nano-ZnO /
- mechanical properties /
- thermal stability
[1] Shadfar H, Pashakolaei M G, Foroud A A 2021 Int. T. Electr. Energy 31 24Google Scholar
[2] Chen Q G, Li C P, Cheng S, Sun W, Chi M H, Zhang H 2022 IEEE T. Dielect. El. In. 29 591Google Scholar
[3] Tang C, Chen R, Zhang J Z, Peng X, Chen B H, Zhang L S 2022 IET Nanodielectrics 5 63Google Scholar
[4] Yang L, Gao J, Peng X, Qin J S, Tang C 2021 Cellulose 28 6023Google Scholar
[5] Tang C, Zhang S, Wang X B, Hao J 2018 Cellulose 25 3619Google Scholar
[6] Chen Q J, Kang M C, Xie Q H, Wang J H 2020 Cellulose 27 7621Google Scholar
[7] Ji D Y, Li T, Hu W P, Fuchs H 2019 Adv. Mater. 31 19Google Scholar
[8] Sun X, Chi M H, Weng L, Shi J H, Zhang X R 2021 J. Mater. SCI-Mater. El. 32 26548Google Scholar
[9] Gao F, Zhang X R, Weng L, Cheng Y J, Shi J H 2022 Pigm. Resin Technol. 51 441Google Scholar
[10] Han Z Q, Qi S L, Liu W, Han L, Wu Z P, Wu D Z 2013 Ind. Eng. Chem. Res. 52 3042Google Scholar
[11] Wei W C, Chen H Q, Zha J W, Zhang Y Y 2023 Front. Chem. Sci. Eeg. 17 991Google Scholar
[12] 吕程 2014 博士学位论文 (重庆: 重庆大学)
Lv C 2014 Ph. D. Dissertation (Chongqing: Chongqing University
[13] 张松, 唐超, Chen G, 周渠, 吕程, 李旭 2015 中国科学: 技术科学 45 1167Google Scholar
Zhang S, Tang C, Chen G, Zhou Q, Lv C, Li X 2015 Sci. Sin. Tech. 45 1167Google Scholar
[14] Huang M, Han Q B, Lv Y Z, Wang L, Shan B L, Ge Y, Qi B, Li C R 2018 IEEE T. Dielect. El. In. 25 1135Google Scholar
[15] Zhang Y Y, Xu C Q, WEI W C, Deng Y K, Nie S X, Zha J W 2023 High Volt. 8 599Google Scholar
[16] Wei W C, Zhang Y Y, Chen H Q, Xu C Q, Zha J W, Nie S X 2023 Mater. Design 233 11Google Scholar
[17] 王久亮, 刘宽, 秦秀娟, 邵光杰 2004 哈尔滨工业大学学报 02 226Google Scholar
Wang J L, Liu K, Qin X J, Shao G J 2004 J. Harbin Instit. Tech. 02 226Google Scholar
[18] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 物理学报 67 140701Google Scholar
Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta Phys. Sin. 67 140701Google Scholar
[19] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武 2019 物理学报 68 070701Google Scholar
Li Y, Zhang L B, Li J, Lian X X, Zhu J W 2019 Acta Phys. Sin. 68 070701Google Scholar
[20] Banerjee A, Bose N, Lahiri A 2023 IEEE T. Ind. Appl. 59 479Google Scholar
[21] Lu J Y, Jiang Q S, Zhang J 2009 21st Chinese Control and Decision Conference Guilin, China, June 17–19, 2009 p4823
[22] Naskar M, Dharmendra H M, Meena K P 2021 5th International Conference on Condition Assessment Techniques in Electrical Systems Kozhikode, India, December 3–5, 2021 p186
[23] Kong Y, Li L B, Fu S Y 2022 J. Mater. Chem. A 10 14451Google Scholar
[24] Du D Y, Tang C, Tang Y J, Yang L, Hao J 2021 Compos. Struct. 261 6Google Scholar
[25] Zhang Z X, Zhou H B, Li W T, Tang C 2021 Processes 9 9Google Scholar
[26] Zhang Y Y, Li Y, Zheng H B, Zhu M Z, Liu J F, Yang T, Zhang C H, Li Y 2020 Cellulose 27 2455Google Scholar
[27] Mo Y, Yang L J, Yin F, Gao Y Y 2022 Polym. Composite 43 1698Google Scholar
[28] Inagak T, Siesler H W, Mitsui K, Tsuchikawa S 2010 Biomacromolecules 11 2300Google Scholar
[29] Mazeau K, Heux L 2003 J. Phys. Chem. B 107 2394Google Scholar
[30] Wang X B, Tang C, Wang Q, Li X P, Hao J 2017 Energies 10 11Google Scholar
[31] Bond S D, Leimkuhler B J, Laird B B 1999 J. Comput. Phys. 151 114Google Scholar
[32] 吕健, 詹怀宇, 晋华春 2008 中国造纸 5 54Google Scholar
Lv J, Zhan H Y, Jin H C 2008 China Pulp Paper 5 54Google Scholar
[33] Tanaka F, Okamura K 2005 Cellulose 12 243Google Scholar
[34] Chang K S, Chung Y C, Yang T H, Lue S J, Tung K L, Lin Y F 2012 J. Membrane Sci. 417 119Google Scholar
[35] 王有元, 杨涛, 廖瑞金, 张大伟, 刘强, 田苗 2012 高电压技术 38 1199
Wang Y Y, Yang T, Liao R J, Zhang D W, Liu Q, Tian M 2012 High Volt. Eng. 38 1199
[36] Liu X J, Rao Z H 2019 Int. J. Heat. Mass Tran. 132 362Google Scholar
[37] 王振华, 卢咏来, 张立群 2009 橡胶工业 56 581Google Scholar
Wang Z H, Lu Y L, Zhang L Q 2009 China Rubber Ind. 56 581Google Scholar
-
图 3 (a)不同nano-ZnO含量的nano-ZnO/纤维素模型的内聚能密度; (b) Nano-ZnO填充无定形区域空隙时产生的氢键; (c) Nano-ZnO出现团聚现象时产生的氢键; (d) 6种模型的氢键数量
Figure 3. (a) Cohesion energy density of nano-ZnO/cellulose models with different nano-ZnO contents; (b) hydrogen bonding when Nano-ZnO fills voids in amorphous regions; (c) hydrogen bonds generated when Nano-ZnO is agglomerated; (d) the number of hydrogen bonds in the six models.
表 1 分子动力学计算纯纤维素绝缘纸和改性纤维素绝缘纸的力学参数
Table 1. Mechanical parameters of pure cellulose insulating paper and modified cellulose insulating paper calculated by molecular dynamics.
模型 λ μ E/GPa G/GPa K/GPa K/G P0 1.7942 2.7210 6.5232 2.7210 3.6082 1.3261 P1 2.6659 3.9442 9.4791 3.9442 5.2954 1.3426 P2 1.1556 3.8840 8.6586 3.8840 3.7449 0.9642 P3 2.2157 2.7362 6.6967 2.7362 4.0398 1.4764 P4 0.5645 2.7983 6.0663 2.4300 2.7983 0.8684 P5 2.6101 2.3187 5.8653 4.1559 2.3187 1.7923 -
[1] Shadfar H, Pashakolaei M G, Foroud A A 2021 Int. T. Electr. Energy 31 24Google Scholar
[2] Chen Q G, Li C P, Cheng S, Sun W, Chi M H, Zhang H 2022 IEEE T. Dielect. El. In. 29 591Google Scholar
[3] Tang C, Chen R, Zhang J Z, Peng X, Chen B H, Zhang L S 2022 IET Nanodielectrics 5 63Google Scholar
[4] Yang L, Gao J, Peng X, Qin J S, Tang C 2021 Cellulose 28 6023Google Scholar
[5] Tang C, Zhang S, Wang X B, Hao J 2018 Cellulose 25 3619Google Scholar
[6] Chen Q J, Kang M C, Xie Q H, Wang J H 2020 Cellulose 27 7621Google Scholar
[7] Ji D Y, Li T, Hu W P, Fuchs H 2019 Adv. Mater. 31 19Google Scholar
[8] Sun X, Chi M H, Weng L, Shi J H, Zhang X R 2021 J. Mater. SCI-Mater. El. 32 26548Google Scholar
[9] Gao F, Zhang X R, Weng L, Cheng Y J, Shi J H 2022 Pigm. Resin Technol. 51 441Google Scholar
[10] Han Z Q, Qi S L, Liu W, Han L, Wu Z P, Wu D Z 2013 Ind. Eng. Chem. Res. 52 3042Google Scholar
[11] Wei W C, Chen H Q, Zha J W, Zhang Y Y 2023 Front. Chem. Sci. Eeg. 17 991Google Scholar
[12] 吕程 2014 博士学位论文 (重庆: 重庆大学)
Lv C 2014 Ph. D. Dissertation (Chongqing: Chongqing University
[13] 张松, 唐超, Chen G, 周渠, 吕程, 李旭 2015 中国科学: 技术科学 45 1167Google Scholar
Zhang S, Tang C, Chen G, Zhou Q, Lv C, Li X 2015 Sci. Sin. Tech. 45 1167Google Scholar
[14] Huang M, Han Q B, Lv Y Z, Wang L, Shan B L, Ge Y, Qi B, Li C R 2018 IEEE T. Dielect. El. In. 25 1135Google Scholar
[15] Zhang Y Y, Xu C Q, WEI W C, Deng Y K, Nie S X, Zha J W 2023 High Volt. 8 599Google Scholar
[16] Wei W C, Zhang Y Y, Chen H Q, Xu C Q, Zha J W, Nie S X 2023 Mater. Design 233 11Google Scholar
[17] 王久亮, 刘宽, 秦秀娟, 邵光杰 2004 哈尔滨工业大学学报 02 226Google Scholar
Wang J L, Liu K, Qin X J, Shao G J 2004 J. Harbin Instit. Tech. 02 226Google Scholar
[18] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 物理学报 67 140701Google Scholar
Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta Phys. Sin. 67 140701Google Scholar
[19] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武 2019 物理学报 68 070701Google Scholar
Li Y, Zhang L B, Li J, Lian X X, Zhu J W 2019 Acta Phys. Sin. 68 070701Google Scholar
[20] Banerjee A, Bose N, Lahiri A 2023 IEEE T. Ind. Appl. 59 479Google Scholar
[21] Lu J Y, Jiang Q S, Zhang J 2009 21st Chinese Control and Decision Conference Guilin, China, June 17–19, 2009 p4823
[22] Naskar M, Dharmendra H M, Meena K P 2021 5th International Conference on Condition Assessment Techniques in Electrical Systems Kozhikode, India, December 3–5, 2021 p186
[23] Kong Y, Li L B, Fu S Y 2022 J. Mater. Chem. A 10 14451Google Scholar
[24] Du D Y, Tang C, Tang Y J, Yang L, Hao J 2021 Compos. Struct. 261 6Google Scholar
[25] Zhang Z X, Zhou H B, Li W T, Tang C 2021 Processes 9 9Google Scholar
[26] Zhang Y Y, Li Y, Zheng H B, Zhu M Z, Liu J F, Yang T, Zhang C H, Li Y 2020 Cellulose 27 2455Google Scholar
[27] Mo Y, Yang L J, Yin F, Gao Y Y 2022 Polym. Composite 43 1698Google Scholar
[28] Inagak T, Siesler H W, Mitsui K, Tsuchikawa S 2010 Biomacromolecules 11 2300Google Scholar
[29] Mazeau K, Heux L 2003 J. Phys. Chem. B 107 2394Google Scholar
[30] Wang X B, Tang C, Wang Q, Li X P, Hao J 2017 Energies 10 11Google Scholar
[31] Bond S D, Leimkuhler B J, Laird B B 1999 J. Comput. Phys. 151 114Google Scholar
[32] 吕健, 詹怀宇, 晋华春 2008 中国造纸 5 54Google Scholar
Lv J, Zhan H Y, Jin H C 2008 China Pulp Paper 5 54Google Scholar
[33] Tanaka F, Okamura K 2005 Cellulose 12 243Google Scholar
[34] Chang K S, Chung Y C, Yang T H, Lue S J, Tung K L, Lin Y F 2012 J. Membrane Sci. 417 119Google Scholar
[35] 王有元, 杨涛, 廖瑞金, 张大伟, 刘强, 田苗 2012 高电压技术 38 1199
Wang Y Y, Yang T, Liao R J, Zhang D W, Liu Q, Tian M 2012 High Volt. Eng. 38 1199
[36] Liu X J, Rao Z H 2019 Int. J. Heat. Mass Tran. 132 362Google Scholar
[37] 王振华, 卢咏来, 张立群 2009 橡胶工业 56 581Google Scholar
Wang Z H, Lu Y L, Zhang L Q 2009 China Rubber Ind. 56 581Google Scholar
Catalog
Metrics
- Abstract views: 1699
- PDF Downloads: 82
- Cited By: 0