Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of Dy3+, Na+: PbGa2S4 mid-infrared laser based on experimental parameters

Yu Xue-Zhou Huang Chang-Bao Wu Hai-Xin Hu Qian-Qian Liu Guo-Jin Li Ya Zhu Zhi-Cheng Qi Hua-Bei Ni You-Bao Wang Zhen-You

Citation:

Theoretical study of Dy3+, Na+: PbGa2S4 mid-infrared laser based on experimental parameters

Yu Xue-Zhou, Huang Chang-Bao, Wu Hai-Xin, Hu Qian-Qian, Liu Guo-Jin, Li Ya, Zhu Zhi-Cheng, Qi Hua-Bei, Ni You-Bao, Wang Zhen-You
PDF
HTML
Get Citation
  • According to the absorption spectra of Dy3+, Na+: PbGa2S4 crystal elements, as well as the theoretical calculations obtained from Judd-Ofelt analysis, we derive partial fluorescence absorption and emission cross sections. For energy levels that cannot be directly measured, we employ the reciprocal method to calculate their respective absorption cross-section and emission cross-section. Combing the experimental measurements and the calculation results, the experimental setup, which can generate a 4.3-μm mid-infrared laser through directly pumping dysprosium and Dy3+, Na+: PbGa2S4 crystals by 1.3 μm and 1.7 μm diode lasers, is investigated through numerical simulation. The spatial distributions of laser power, gain coefficient, and absorption coefficient within the crystal are obtained through numerical calculation. Furthermore, the effects of pumping power, crystal length, and output mirror reflectance on laser performance are analyzed. In this model, a 2.9-μm laser oscillation is introduced in the optical path and the changes of output power before and after introduction are observed. Our results demonstrate that the introduction of 2.9-μm laser oscillation effectively facilitates the particle number transfer from the 6H13/2 level to the ground state 6H15/2, thereby reducing the self-terminating phenomenon during the transition between the 6H11/2 and 6H13/2 levels, and enhancing both output power and slope efficiency of the laser system. Numerical results indicate that maximum power output for the 1.3μm diode laser pumping is achieved at 103 mW with a pumping threshold of 12 mW and a slope efficiency of 2.8%, while for the 1.7-μm diode laser pumping, the power output reaches up to 315 mW with a pumping threshold of 46 mW and a slope efficiency of 8%. Additionally, the calculation results show that the optimal crystal length is 17 mm for the 1.3 μm diode laser pumping, and 32 mm for the 1.7 μm diode laser pumping. Finally, the best reflectance value for the output mirror is 0.92. These numerical results are of great significance for guiding the crystal processing and the selection of optical path structure parameters.
      Corresponding author: Huang Chang-Bao, cbhuang@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3601503).
    [1]

    Sorokina I T 2003 Solid-State Mid-Infrared Laser Sources (Palo Alto: Springer) pp89–262

    [2]

    谭改娟, 谢冀江, 张来明, 郭劲, 杨贵龙, 邵春雷, 陈飞, 杨欣欣, 阮鹏 2013 中国光学 6 501

    Tan G J, Xie J J, Zhang L M, Guo J, Yang G L, Shao C L, Chen F, Yang X X, Ruan P 2013 Chin. Opt. 6 501

    [3]

    钟鸣, 任钢 2007 四川兵工学报 28 7

    Zhong M, Ren G 2007 J. Ordnance Equip. Eng. 28 7

    [4]

    Ebrahim-Zadeh M, Sorokina I T 2008 NATO Science for Peace and Security Series B: Physics and Biophysics (Bielefeld : Springer) pp161–170

    [5]

    朱灿林, 康民强, 邓颖, 李威威, 周松, 李剑彬, 郑建刚, 朱启华 2022 激光与红外 52 956Google Scholar

    Zhu C L, Kang M Q, Deng Y, Li W W, Zhou S, Li J B, Zhen J G, Zhu Q H 2022 Laser Infrared 52 956Google Scholar

    [6]

    Pan Q K 2015 Chin. Opt. 8 557 [潘其坤 2015 中国光学 8 557]Google Scholar

    Pan Q K 2015 Chin. Opt. 8 557Google Scholar

    [7]

    魏磊, 肖磊, 韩隆, 吴军勇, 王克强 2012 中国激光 39 0702006Google Scholar

    Wei L, Xiao L, Han L, Wu J Y, Wang K Q 2012 Chin. J. Lasers 39 0702006Google Scholar

    [8]

    Lippert E 2015 Conference on Lasers and Electro-Optics (CLEO) California, San Jose, May 10–15, 2015 pSW3O.3

    [9]

    古新安, 朱韦臻, 罗志伟, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 中国光学 5 660

    Gu X A, Zhu W Z, Luo Z W, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 Chin. Opt. 5 660

    [10]

    Mirov S, Fedorov V, Moskalev I, Martyshkin D, Kim C 2010 Laser Photon. Rev. 4 21Google Scholar

    [11]

    张利明, 周寿桓, 赵鸿, 张大勇, 冯宇彤, 李尧, 朱辰, 张昆, 王雄飞 2012 激光与红外 42 360Google Scholar

    Zhang L M, Zhou S H, Zhao H, Zhang D Y, Feng Y T, Li Y, Zhu C, Zhang K, Wang X F 2012 Laser Infrared 42 360Google Scholar

    [12]

    Barnes N P, Esterowitz L, Allen R E 1984 Conference on Lasers and Electro-Optics pWA5

    [13]

    Esterowitz L, Rosenblatt G H, Pinto J F 1994 Electron. Lett. 30 1596Google Scholar

    [14]

    Bowman S R, Shaw L B, Feldman B J, Ganem J 1996 IEEE J. Quantum Electron. 32 646Google Scholar

    [15]

    Nostrand M C, Page R H, Payne S A, Krupke W F, Schunemann P G, Isaenko L I 1999 Advanced Solid State Lasers 26 pWD4Google Scholar

    [16]

    Wu K, Pan S L, Wu H P, Yang Z H 2015 J. Mol. Struct. 1082 174Google Scholar

    [17]

    Jelinkova H, Doroshenko M E, Osiko V V, Jelínek M, Šulc J, Němec M, Vyhlídal D, Badikov V V, Badikov D V 2016 Appl. Phys. A 122 738Google Scholar

    [18]

    Majewski M R, Woodward R I, Jackson S D 2020 Laser Photon. Rev. 14 1900195.1Google Scholar

    [19]

    Vincent F, Frédéric J, Maxence L, Martin B, Réal V 2019 Opt. Lett. 44 491Google Scholar

    [20]

    Wang Y C, Jobin F, Duval S, Fortin V, Vallée R 2019 Opt. Lett. 44 395Google Scholar

    [21]

    Ososkov Y, Lee J, Fernandez T T, Fuerbach A, Jackson S D 2023 Opt. Lett. 48 2664Google Scholar

    [22]

    Šulc J, Jelinkova H, Doroshenko M E, Basiev T T, Osiko V V, Badikov V V, Badikov D V 2010 Opt. Lett. 35 3501Google Scholar

    [23]

    Xiao X S, Xu Y T, Guo H T, Wang P F, Cui X X, Lu M, Wang Y S, Peng B 2018 IEEE Photonics J. 10 1501011Google Scholar

    [24]

    Majewski M R, Jackson S D 2016 Opt. Lett. 41 2173Google Scholar

    [25]

    陈钰清, 王静环 2010 激光原理(第2版) (杭州: 浙江大学出版社)第 122—127页

    Chen J Q, Wang J H 2010 Laser Principle (Vol. 2) (Hangzhou: Zhejiang University press) pp122–127

    [26]

    Yu X Z, Huang C B, Ni Y B, Wang Z Y, Wu H X, Hu Q Q, Liu G J, Zhou Q, Wei L L 2023 J. Lumines. 262 119951Google Scholar

    [27]

    Walsh B M, Barnes N P, Bartolo B D 1998 J. Appl. Phys. 83 2772Google Scholar

    [28]

    Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619Google Scholar

    [29]

    Carnall W T, Goodman G L, Rajnak K, Rana R 1989 J. Chem. Phys. 90 3443Google Scholar

    [30]

    康民强, 朱灿林, 邓颖, 朱启华 2022 光学学报 42 0714002Google Scholar

    Kang M Q, Zhu C L, Deng Y, Zhu Q H 2022 Acta Opt. Sin. 42 0714002Google Scholar

  • 图 1  Dy3+部分能级跃迁图 (a) 1320 nm泵浦源; (b) 1730 nm泵浦源

    Figure 1.  Partial energy level transition diagram of Dy3+: (a) 1320 nm pumping; (b) 1730 nm pumping.

    图 2  Dy3+, Na+:PbGa2S4晶体的吸收光谱和荧光发射谱[26] (a) 500—3000 nm吸收光谱; (b) 3500—5500 nm荧光发射谱

    Figure 2.  Absorption spectrum and fluorescence emission spectrum of Dy3+, Na+:PbGa2S4 crystal[26]: (a) Absorption spectrum range from 500 to 3000 nm; (b) fluorescence emission spectrum range from 3500 to 5500 nm.

    图 3  不同泵浦功率下输出功率随晶体长度变化情况 (a) 1320 nm泵浦源; (b) 1730 nm泵浦源

    Figure 3.  Output power varying with crystal length in different pump power: (a) Pumped by 1320 nm; (b) pumped by 1730 nm.

    图 4  不同泵浦波长下输出功率随泵浦功率的变化

    Figure 4.  Output power varying with pumped power in different pumping wavelengths.

    图 5  1320 nm泵浦源下稳定振荡时泵浦功率(a)、信号光S功率(b)、信号光I功率(c)、增益和吸收系数(d)随位置的变化泵浦光功率

    Figure 5.  Pump power (a), signal power (b), idler power (c), and gain coefficient (d) varying with position during stable oscillation pumped by 1320 nm laser.

    图 6  1730 nm泵浦源下稳定振荡时泵浦功率(a)、信号光S功率(b)、信号光I功率(c)、增益和吸收系数(d)随位置的变化

    Figure 6.  Pump power (a), signal power (b), idler power (c) and gain coefficient (d) varying with position during stable oscillation pumped by 1730 nm laser.

    图 7  斜率效率(a)和信号光S功率(b)随输出镜反射率变化情况斜率效率

    Figure 7.  Slope efficiency (a) and signal S power (b) varying with reflectance of output mirror.

    表 1  计算得到的Dy3+, Na+: PbGa2S4部分光谱参数

    Table 1.  Partial calculated spectral parameters of Dy3+, Na+: PbGa2S4.

    $ \lambda/\rm nm $ $E_{\rm ZL}/{\rm cm}^{-1} $ $Z_{\mathrm{l}}/Z_{\mathrm{u}} $ $ {\sigma _{{\mathrm{ab}}}}/(10^{-21}\; \rm cm^2) $ $ {\sigma _{\rm em}}/(10^{-21}\; \rm cm^2) $
    1320 7632 0.83 8.17 8.71
    1730 5883 0.91 2.87 4.23
    2875 3503 1.13 6.30 7.97
    4325 2380 1.24 5.27 9.00
    DownLoad: CSV

    表 2  Dy3+, Na+:PbGa2S4激光器的光谱参数[17,23,26,30]

    Table 2.  Spectral parameters of Dy3+, Na+:PbGa2S4[17,23,26,30].

    Parameter Value Unit Parameter Value Unit
    $ {\lambda _{{\mathrm{P}}1}} $ 1320 nm $ {\alpha _{{\mathrm{P}}1}} $ 0.299 cm–1
    $ {\lambda _{{\mathrm{P}}2}} $ 1730 nm $ {\alpha _{{\mathrm{P}}2}} $ 0.893 cm–1
    $ {\lambda _{\mathrm{S}}} $ 4325 nm $ {\tau _4} $ 0.266 ms
    $ {\lambda _{\mathrm{I}}} $ 2875 nm $ {\tau _3} $ 2.697 ms
    $ {\sigma _{14}} $ 8.17×10–21 cm–2 $ {\tau _2} $ 6.092 ms
    $ {\sigma _{41}} $ 8.71×10–21 cm–2 W42 430 s–1
    $ {\sigma _{13}} $ 6.87×10–21 cm–2 W32 40 s–1
    $ {\sigma _{31}} $ 7.23×10–21 cm–2 W31 320 s–1
    $ {\sigma _{12}} $ 6.30×10–21 cm–2 W21 164 s–1
    $ {\sigma _{21}} $ 7.97×10–21 cm–2 M43 3000 s–1
    $ {\sigma _{23}} $ 5.27×10–21 cm–2 M32 36 s–1
    $ {\sigma _{32}} $ 9.00×10–21 cm–2 RS1 0.99
    AS 1×10–6 cm2 RS2 0.95
    f 400 mm RI1 0.99
    L 17 mm RI2 0.96
    N 1.26×1026 m3 RP1 0.99
    $ \alpha $ 0.2 cm–1 RP2 0.99
    DownLoad: CSV
  • [1]

    Sorokina I T 2003 Solid-State Mid-Infrared Laser Sources (Palo Alto: Springer) pp89–262

    [2]

    谭改娟, 谢冀江, 张来明, 郭劲, 杨贵龙, 邵春雷, 陈飞, 杨欣欣, 阮鹏 2013 中国光学 6 501

    Tan G J, Xie J J, Zhang L M, Guo J, Yang G L, Shao C L, Chen F, Yang X X, Ruan P 2013 Chin. Opt. 6 501

    [3]

    钟鸣, 任钢 2007 四川兵工学报 28 7

    Zhong M, Ren G 2007 J. Ordnance Equip. Eng. 28 7

    [4]

    Ebrahim-Zadeh M, Sorokina I T 2008 NATO Science for Peace and Security Series B: Physics and Biophysics (Bielefeld : Springer) pp161–170

    [5]

    朱灿林, 康民强, 邓颖, 李威威, 周松, 李剑彬, 郑建刚, 朱启华 2022 激光与红外 52 956Google Scholar

    Zhu C L, Kang M Q, Deng Y, Li W W, Zhou S, Li J B, Zhen J G, Zhu Q H 2022 Laser Infrared 52 956Google Scholar

    [6]

    Pan Q K 2015 Chin. Opt. 8 557 [潘其坤 2015 中国光学 8 557]Google Scholar

    Pan Q K 2015 Chin. Opt. 8 557Google Scholar

    [7]

    魏磊, 肖磊, 韩隆, 吴军勇, 王克强 2012 中国激光 39 0702006Google Scholar

    Wei L, Xiao L, Han L, Wu J Y, Wang K Q 2012 Chin. J. Lasers 39 0702006Google Scholar

    [8]

    Lippert E 2015 Conference on Lasers and Electro-Optics (CLEO) California, San Jose, May 10–15, 2015 pSW3O.3

    [9]

    古新安, 朱韦臻, 罗志伟, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 中国光学 5 660

    Gu X A, Zhu W Z, Luo Z W, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 Chin. Opt. 5 660

    [10]

    Mirov S, Fedorov V, Moskalev I, Martyshkin D, Kim C 2010 Laser Photon. Rev. 4 21Google Scholar

    [11]

    张利明, 周寿桓, 赵鸿, 张大勇, 冯宇彤, 李尧, 朱辰, 张昆, 王雄飞 2012 激光与红外 42 360Google Scholar

    Zhang L M, Zhou S H, Zhao H, Zhang D Y, Feng Y T, Li Y, Zhu C, Zhang K, Wang X F 2012 Laser Infrared 42 360Google Scholar

    [12]

    Barnes N P, Esterowitz L, Allen R E 1984 Conference on Lasers and Electro-Optics pWA5

    [13]

    Esterowitz L, Rosenblatt G H, Pinto J F 1994 Electron. Lett. 30 1596Google Scholar

    [14]

    Bowman S R, Shaw L B, Feldman B J, Ganem J 1996 IEEE J. Quantum Electron. 32 646Google Scholar

    [15]

    Nostrand M C, Page R H, Payne S A, Krupke W F, Schunemann P G, Isaenko L I 1999 Advanced Solid State Lasers 26 pWD4Google Scholar

    [16]

    Wu K, Pan S L, Wu H P, Yang Z H 2015 J. Mol. Struct. 1082 174Google Scholar

    [17]

    Jelinkova H, Doroshenko M E, Osiko V V, Jelínek M, Šulc J, Němec M, Vyhlídal D, Badikov V V, Badikov D V 2016 Appl. Phys. A 122 738Google Scholar

    [18]

    Majewski M R, Woodward R I, Jackson S D 2020 Laser Photon. Rev. 14 1900195.1Google Scholar

    [19]

    Vincent F, Frédéric J, Maxence L, Martin B, Réal V 2019 Opt. Lett. 44 491Google Scholar

    [20]

    Wang Y C, Jobin F, Duval S, Fortin V, Vallée R 2019 Opt. Lett. 44 395Google Scholar

    [21]

    Ososkov Y, Lee J, Fernandez T T, Fuerbach A, Jackson S D 2023 Opt. Lett. 48 2664Google Scholar

    [22]

    Šulc J, Jelinkova H, Doroshenko M E, Basiev T T, Osiko V V, Badikov V V, Badikov D V 2010 Opt. Lett. 35 3501Google Scholar

    [23]

    Xiao X S, Xu Y T, Guo H T, Wang P F, Cui X X, Lu M, Wang Y S, Peng B 2018 IEEE Photonics J. 10 1501011Google Scholar

    [24]

    Majewski M R, Jackson S D 2016 Opt. Lett. 41 2173Google Scholar

    [25]

    陈钰清, 王静环 2010 激光原理(第2版) (杭州: 浙江大学出版社)第 122—127页

    Chen J Q, Wang J H 2010 Laser Principle (Vol. 2) (Hangzhou: Zhejiang University press) pp122–127

    [26]

    Yu X Z, Huang C B, Ni Y B, Wang Z Y, Wu H X, Hu Q Q, Liu G J, Zhou Q, Wei L L 2023 J. Lumines. 262 119951Google Scholar

    [27]

    Walsh B M, Barnes N P, Bartolo B D 1998 J. Appl. Phys. 83 2772Google Scholar

    [28]

    Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619Google Scholar

    [29]

    Carnall W T, Goodman G L, Rajnak K, Rana R 1989 J. Chem. Phys. 90 3443Google Scholar

    [30]

    康民强, 朱灿林, 邓颖, 朱启华 2022 光学学报 42 0714002Google Scholar

    Kang M Q, Zhu C L, Deng Y, Zhu Q H 2022 Acta Opt. Sin. 42 0714002Google Scholar

  • [1] Yao Xiao-Dai, Wu Shuang, Zhao Rui, Wu Miao-Xin, Liu Hang, Jin Guang-Yong, Yu Yong-Ji. 3.4 μm mid-infrared pulse train laser based on stepped acousto-optic Q-switched external cavity pumped MgO:PPLN optical parametric oscillator. Acta Physica Sinica, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] Yu Bo-Wen, He Xiao-Tian, Xu Jin-Liang. Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO2 pool heat transfer. Acta Physica Sinica, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [3] Yang Jia-Qi, Zhao Gang, Jiao Kang, Gao Jian, Yan Xiao-Juan, Zhao Yan-Ting, Ma Wei-Guang, Jia Suo-Tang. Research on generation of stable mid-infrared lasers with narrow linewidths based on optical feedback locking. Acta Physica Sinica, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [4] Xia Wen-Xin, Fu Shi-Jie, Zhang Jun-Xiang, Zhang Lu, Sheng Quan, Luo Xue-Wen, Shi Wei, Yao Jian-Quan. Numerical analysis and optimization of 2.8 μm lightly-erbium-doped fluoride fiber laser based on cascaded transition. Acta Physica Sinica, 2023, 72(22): 224205. doi: 10.7498/aps.72.20230903
    [5] Zhuang Xiao-Ru, Xu Xin-Hai, Yang Zhi, Zhao Yan-Xing, Yu Peng. Numerical investigation on heat transfer of supercritical CO2 in solar receiver tube in high temperature region. Acta Physica Sinica, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [6] Yang Wen-Yuan, Dong Ye, Sun Hui-Fang, Dong Zhi-Wei. Competitions among modes in magnetically insulated transmission line oscillator. Acta Physica Sinica, 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [7] Hao Qian-Qian, Zong Meng-Yu, Zhang Zhen, Huang Hao, Zhang Feng, Liu Jie, Liu Dan-Hua, Su Liang-Bi, Zhang Han. Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser. Acta Physica Sinica, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [8] Wang Xin-Xin, Chi Lu-Xin, Wu Guang-Feng, Li Chun-Tian, Fan Ding. Numerical simulation of mixture gas arc of Ar-O2. Acta Physica Sinica, 2019, 68(17): 178102. doi: 10.7498/aps.68.20190416
    [9] Hu Bo, Wu Yue-Hao, Zheng Yu-Lu, Dai Shi-Xun. Fabrication and characterization of chalcogenide glass microsphere lasers operating at 2 μm. Acta Physica Sinica, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [10] Xu Xiao-Xiao, Wu Yang-Yang, Liu Chao, Wang Kai-Zheng, Ye Jian. Numerical study of cooling heat transfer of supercritical carbon dioxide in a horizontal helically coiled tube. Acta Physica Sinica, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [11] Wei Wei, Zhang Li-Yuan, Gu Zhao-Lin. Particle charging mechanism and numerical methodology for industrial applications. Acta Physica Sinica, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [12] Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica. Acta Physica Sinica, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [13] Li Zhe, Jiang Hai-He, Wang Li, Yang Jing-Wei, Wu Xian-You. Numerical simulation and experimental study of thermal-induced-depolarization in 2 m Cr,Tm,Ho:YAG laser. Acta Physica Sinica, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [14] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave. Acta Physica Sinica, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [15] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [16] Wang Ke-Sheng, Liu Quan-Kun, Zhang De-Yuan. Numerical simulation of the tribological behaviour of the serial coatings of D2 steel. Acta Physica Sinica, 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [17] Ouyang Jian-Ming, Shao Fu-Qiu, Lin Ming-Dong. Numerical simulation of ozone generation in oxygenic plasmas. Acta Physica Sinica, 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [18] Jiang Hui-Feng, Zhang Qing-Chuan, Chen Zhong-Jia, Wu Xiao-Ping. Numerical simulation of the Portevin-Le Chatelier effect in annealed aluminum alloys. Acta Physica Sinica, 2006, 55(6): 2856-2859. doi: 10.7498/aps.55.2856
    [19] ZHOU YU-GANG, SHEN BO, LIU JIE, ZHOU HUI-MEI, YU HUI-QIANG, ZHANG RONG, SHI YI, ZHENG YOU-DOU. EXTRACTION OF POLARIZATION-INDUCED CHARGE DENSITY INMODULATION-DOPED AlxGa1-xN/GaN HETEROSTRUCTURETHROUGH THE SIMULATION OF THE SCHOTTKY CAPACITANCE-VOLTAGE CHARACTERISTICS. Acta Physica Sinica, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
    [20] YU YAN-MEI, YANG GEN-CANG, ZHAO DA-WEN, Lü YI-LI, A. KARMA, C. BECKERMANN. NUMERICAL SIMULATION OF DENDRITIC GROWTH IN UNDERCOOLED MELT USING PHASE-FIELD APPROACH. Acta Physica Sinica, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
Metrics
  • Abstract views:  476
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2024
  • Accepted Date:  25 June 2024
  • Available Online:  09 July 2024
  • Published Online:  20 August 2024

/

返回文章
返回